视频学习分析:调查基于视频的在线学习中的行为模式和学习者集群

IF 6.4 1区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Meehyun Yoon , Jungeun Lee , Il-Hyun Jo
{"title":"视频学习分析:调查基于视频的在线学习中的行为模式和学习者集群","authors":"Meehyun Yoon ,&nbsp;Jungeun Lee ,&nbsp;Il-Hyun Jo","doi":"10.1016/j.iheduc.2021.100806","DOIUrl":null,"url":null,"abstract":"<div><p>Video-based online learning is becoming commonplace in higher education settings. Prior studies have suggested design principles and instructional strategies to boost video-based learning. However, little research has been done on different learner characteristics, such as how learners behave, what behavioral patterns they exhibit, and how different they are from each other. To fill this research gap in student-video interaction, we employed learning analytics to obtain useful insights into students' learning in the context of video-based online learning. From 11 log behaviors represented by log data from 72 college students, four behavioral patterns were identified while students learned from videos: browsing, social interaction, information seeking, and environment configuration. Based on the behavioral patterns observed, participants were classified into two clusters. Participants in the active learner cluster exhibited frequent use of social interaction, information seeking, and environment configuration, while participants in the passive learner cluster exhibited only frequent browsing. We found that active learners exhibited higher learning achievement than passive learners.</p></div>","PeriodicalId":48186,"journal":{"name":"Internet and Higher Education","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.iheduc.2021.100806","citationCount":"61","resultStr":"{\"title\":\"Video learning analytics: Investigating behavioral patterns and learner clusters in video-based online learning\",\"authors\":\"Meehyun Yoon ,&nbsp;Jungeun Lee ,&nbsp;Il-Hyun Jo\",\"doi\":\"10.1016/j.iheduc.2021.100806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Video-based online learning is becoming commonplace in higher education settings. Prior studies have suggested design principles and instructional strategies to boost video-based learning. However, little research has been done on different learner characteristics, such as how learners behave, what behavioral patterns they exhibit, and how different they are from each other. To fill this research gap in student-video interaction, we employed learning analytics to obtain useful insights into students' learning in the context of video-based online learning. From 11 log behaviors represented by log data from 72 college students, four behavioral patterns were identified while students learned from videos: browsing, social interaction, information seeking, and environment configuration. Based on the behavioral patterns observed, participants were classified into two clusters. Participants in the active learner cluster exhibited frequent use of social interaction, information seeking, and environment configuration, while participants in the passive learner cluster exhibited only frequent browsing. We found that active learners exhibited higher learning achievement than passive learners.</p></div>\",\"PeriodicalId\":48186,\"journal\":{\"name\":\"Internet and Higher Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.iheduc.2021.100806\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet and Higher Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096751621000154\",\"RegionNum\":1,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet and Higher Education","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096751621000154","RegionNum":1,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 61

摘要

基于视频的在线学习在高等教育环境中变得越来越普遍。先前的研究已经提出了促进视频学习的设计原则和教学策略。然而,关于不同学习者特征的研究很少,比如学习者的行为方式,他们表现出的行为模式,以及他们彼此之间的差异。为了填补学生与视频互动方面的研究空白,我们采用学习分析来获得基于视频的在线学习背景下学生学习的有用见解。从72名大学生的日志数据所代表的11种日志行为中,我们确定了学生在视频学习过程中的四种行为模式:浏览、社交互动、信息搜索和环境配置。根据观察到的行为模式,参与者被分为两组。主动学习者集群的参与者表现出频繁的社交互动、信息搜索和环境配置,而被动学习者集群的参与者只表现出频繁的浏览。我们发现主动学习者比被动学习者表现出更高的学习成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video learning analytics: Investigating behavioral patterns and learner clusters in video-based online learning

Video-based online learning is becoming commonplace in higher education settings. Prior studies have suggested design principles and instructional strategies to boost video-based learning. However, little research has been done on different learner characteristics, such as how learners behave, what behavioral patterns they exhibit, and how different they are from each other. To fill this research gap in student-video interaction, we employed learning analytics to obtain useful insights into students' learning in the context of video-based online learning. From 11 log behaviors represented by log data from 72 college students, four behavioral patterns were identified while students learned from videos: browsing, social interaction, information seeking, and environment configuration. Based on the behavioral patterns observed, participants were classified into two clusters. Participants in the active learner cluster exhibited frequent use of social interaction, information seeking, and environment configuration, while participants in the passive learner cluster exhibited only frequent browsing. We found that active learners exhibited higher learning achievement than passive learners.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet and Higher Education
Internet and Higher Education EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
19.30
自引率
4.70%
发文量
30
审稿时长
40 days
期刊介绍: The Internet and Higher Education is a quarterly peer-reviewed journal focused on contemporary issues and future trends in online learning, teaching, and administration within post-secondary education. It welcomes contributions from diverse academic disciplines worldwide and provides a platform for theory papers, research studies, critical essays, editorials, reviews, case studies, and social commentary.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信