基于Hadamard设计的神经网络结构

A. Herbert
{"title":"基于Hadamard设计的神经网络结构","authors":"A. Herbert","doi":"10.2174/1874082001206010001","DOIUrl":null,"url":null,"abstract":"We describe a simple Hadamard design for neural architecture with an equal number of input and output ele- ments that is both error-tolerant and robust to missing information. The design provides a basis for calculation using a classification scheme based on the Chinese remainder theorem, producing an abstract representation of the physical world. The underlying co-prime arrays can be generated in a simple manner biologically and can evolve into more complex de- signs. The approach differs from previously described neural network constructions in that all connectivity is specified by design, with each correctly wired array producing a single output for each subset of inputs. The wiring is consistent with the \"On-Off\" schema observed for different senses because only about half the inputs can be active at any one time. The arrays can be tuned through by varying the number of simultaneous inputs required for activation within a range specified by the array size. The architecture is scalable.","PeriodicalId":88753,"journal":{"name":"The open neuroscience journal","volume":"1 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Neural Architecture Based on Hadamard Designs\",\"authors\":\"A. Herbert\",\"doi\":\"10.2174/1874082001206010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a simple Hadamard design for neural architecture with an equal number of input and output ele- ments that is both error-tolerant and robust to missing information. The design provides a basis for calculation using a classification scheme based on the Chinese remainder theorem, producing an abstract representation of the physical world. The underlying co-prime arrays can be generated in a simple manner biologically and can evolve into more complex de- signs. The approach differs from previously described neural network constructions in that all connectivity is specified by design, with each correctly wired array producing a single output for each subset of inputs. The wiring is consistent with the \\\"On-Off\\\" schema observed for different senses because only about half the inputs can be active at any one time. The arrays can be tuned through by varying the number of simultaneous inputs required for activation within a range specified by the array size. The architecture is scalable.\",\"PeriodicalId\":88753,\"journal\":{\"name\":\"The open neuroscience journal\",\"volume\":\"1 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The open neuroscience journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874082001206010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The open neuroscience journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874082001206010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一种简单的Hadamard神经结构设计,具有相同数量的输入和输出元素,既容错又对缺失信息具有鲁棒性。该设计为使用基于中国剩余定理的分类方案进行计算提供了基础,产生了物理世界的抽象表示。潜在的共素数阵列可以以一种简单的生物学方式生成,并可以演变成更复杂的设计。该方法与先前描述的神经网络结构不同,因为所有连接都是由设计指定的,每个正确连接的阵列为每个输入子集产生单个输出。这种连接方式与我们观察到的不同感官的“开-关”模式是一致的,因为在任何时候,只有大约一半的输入是活跃的。可以通过在数组大小指定的范围内改变激活所需的同时输入的数量来调优数组。架构是可伸缩的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Neural Architecture Based on Hadamard Designs
We describe a simple Hadamard design for neural architecture with an equal number of input and output ele- ments that is both error-tolerant and robust to missing information. The design provides a basis for calculation using a classification scheme based on the Chinese remainder theorem, producing an abstract representation of the physical world. The underlying co-prime arrays can be generated in a simple manner biologically and can evolve into more complex de- signs. The approach differs from previously described neural network constructions in that all connectivity is specified by design, with each correctly wired array producing a single output for each subset of inputs. The wiring is consistent with the "On-Off" schema observed for different senses because only about half the inputs can be active at any one time. The arrays can be tuned through by varying the number of simultaneous inputs required for activation within a range specified by the array size. The architecture is scalable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信