{"title":"为什么要研究扁形虫的睡眠?","authors":"Shauni E T Omond, John A Lesku","doi":"10.1007/s00360-023-01480-x","DOIUrl":null,"url":null,"abstract":"<p><p>The behaviors that characterize sleep have been observed across a broad range of different species. While much attention has been placed on vertebrates (mostly mammals and birds), the grand diversity of invertebrates has gone largely unexplored. Here, we introduce the intrigue and special value in the study of sleeping platyhelminth flatworms. Flatworms are closely related to annelids and mollusks, and yet are comparatively simple. They lack a circulatory system, respiratory system, endocrine glands, a coelom, and an anus. They retain a central and peripheral nervous system, various sensory systems, and an ability to learn. Flatworms sleep, like other animals, a state which is regulated by prior sleep/wake history and by the neurotransmitter GABA. Furthermore, they possess a remarkable ability to regenerate from a mere fragment of the original animal. The regenerative capabilities of flatworms make them a unique bilaterally symmetric animal to study a link between sleep and neurodevelopment. Lastly, the recent applications of tools for probing the flatworm genome, metabolism, and brain activity make their entrance into the field of sleep research all the more timely.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"233-239"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233290/pdf/","citationCount":"0","resultStr":"{\"title\":\"Why study sleep in flatworms?\",\"authors\":\"Shauni E T Omond, John A Lesku\",\"doi\":\"10.1007/s00360-023-01480-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The behaviors that characterize sleep have been observed across a broad range of different species. While much attention has been placed on vertebrates (mostly mammals and birds), the grand diversity of invertebrates has gone largely unexplored. Here, we introduce the intrigue and special value in the study of sleeping platyhelminth flatworms. Flatworms are closely related to annelids and mollusks, and yet are comparatively simple. They lack a circulatory system, respiratory system, endocrine glands, a coelom, and an anus. They retain a central and peripheral nervous system, various sensory systems, and an ability to learn. Flatworms sleep, like other animals, a state which is regulated by prior sleep/wake history and by the neurotransmitter GABA. Furthermore, they possess a remarkable ability to regenerate from a mere fragment of the original animal. The regenerative capabilities of flatworms make them a unique bilaterally symmetric animal to study a link between sleep and neurodevelopment. Lastly, the recent applications of tools for probing the flatworm genome, metabolism, and brain activity make their entrance into the field of sleep research all the more timely.</p>\",\"PeriodicalId\":56033,\"journal\":{\"name\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"volume\":\" \",\"pages\":\"233-239\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233290/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00360-023-01480-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-023-01480-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
The behaviors that characterize sleep have been observed across a broad range of different species. While much attention has been placed on vertebrates (mostly mammals and birds), the grand diversity of invertebrates has gone largely unexplored. Here, we introduce the intrigue and special value in the study of sleeping platyhelminth flatworms. Flatworms are closely related to annelids and mollusks, and yet are comparatively simple. They lack a circulatory system, respiratory system, endocrine glands, a coelom, and an anus. They retain a central and peripheral nervous system, various sensory systems, and an ability to learn. Flatworms sleep, like other animals, a state which is regulated by prior sleep/wake history and by the neurotransmitter GABA. Furthermore, they possess a remarkable ability to regenerate from a mere fragment of the original animal. The regenerative capabilities of flatworms make them a unique bilaterally symmetric animal to study a link between sleep and neurodevelopment. Lastly, the recent applications of tools for probing the flatworm genome, metabolism, and brain activity make their entrance into the field of sleep research all the more timely.
期刊介绍:
The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.