神经系统疾病的分子氢疗法:当前证据综述。

IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Dinesh Ramanathan, Lei Huang, Taylor Wilson, Warren Boling
{"title":"神经系统疾病的分子氢疗法:当前证据综述。","authors":"Dinesh Ramanathan,&nbsp;Lei Huang,&nbsp;Taylor Wilson,&nbsp;Warren Boling","doi":"10.4103/2045-9912.359677","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive oxygen species and other free radicals cause oxidative stress which is the underlying pathogenesis of cellular injury in various neurological diseases. Molecular hydrogen therapy with its unique biological property of selectively scavenging pathological free radicals has demonstrated therapeutic potential in innumerable animal studies and some clinical trials. These studies have implicated several cellular pathways affected by hydrogen therapy in explaining its anti-inflammatory and antioxidative effects. This article reviews relevant animal and clinical studies that demonstrate neuroprotective effects of hydrogen therapy in stroke, neurodegenerative diseases, neurotrauma, and global brain injury.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c8/95/MGR-13-94.PMC9979207.pdf","citationCount":"3","resultStr":"{\"title\":\"Molecular hydrogen therapy for neurological diseases: a review of current evidence.\",\"authors\":\"Dinesh Ramanathan,&nbsp;Lei Huang,&nbsp;Taylor Wilson,&nbsp;Warren Boling\",\"doi\":\"10.4103/2045-9912.359677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reactive oxygen species and other free radicals cause oxidative stress which is the underlying pathogenesis of cellular injury in various neurological diseases. Molecular hydrogen therapy with its unique biological property of selectively scavenging pathological free radicals has demonstrated therapeutic potential in innumerable animal studies and some clinical trials. These studies have implicated several cellular pathways affected by hydrogen therapy in explaining its anti-inflammatory and antioxidative effects. This article reviews relevant animal and clinical studies that demonstrate neuroprotective effects of hydrogen therapy in stroke, neurodegenerative diseases, neurotrauma, and global brain injury.</p>\",\"PeriodicalId\":18559,\"journal\":{\"name\":\"Medical Gas Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c8/95/MGR-13-94.PMC9979207.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Gas Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/2045-9912.359677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2045-9912.359677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 3

摘要

活性氧等自由基引起的氧化应激是多种神经系统疾病中细胞损伤的潜在发病机制。分子氢疗法以其独特的选择性清除病理自由基的生物学特性,在无数的动物研究和一些临床试验中显示出治疗潜力。这些研究暗示了氢疗法影响的几种细胞途径,以解释其抗炎和抗氧化作用。本文综述了氢疗法在脑卒中、神经退行性疾病、神经创伤和全脑损伤中的神经保护作用的相关动物和临床研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular hydrogen therapy for neurological diseases: a review of current evidence.

Reactive oxygen species and other free radicals cause oxidative stress which is the underlying pathogenesis of cellular injury in various neurological diseases. Molecular hydrogen therapy with its unique biological property of selectively scavenging pathological free radicals has demonstrated therapeutic potential in innumerable animal studies and some clinical trials. These studies have implicated several cellular pathways affected by hydrogen therapy in explaining its anti-inflammatory and antioxidative effects. This article reviews relevant animal and clinical studies that demonstrate neuroprotective effects of hydrogen therapy in stroke, neurodegenerative diseases, neurotrauma, and global brain injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Gas Research
Medical Gas Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
5.10
自引率
13.80%
发文量
35
期刊介绍: Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信