Yujie Lu, C. Darne, I. Tan, B. Zhu, J. Rasmussen, E. Sevick-Muraca
{"title":"西门子Inveon多模态扫描仪荧光层析成像的性能评价","authors":"Yujie Lu, C. Darne, I. Tan, B. Zhu, J. Rasmussen, E. Sevick-Muraca","doi":"10.1117/12.2057818","DOIUrl":null,"url":null,"abstract":"A tri-modal (PET/CT/Optical) small animal tomographic imaging system was developed by integrating our advanced non-contact intensified CCD (ICCD) frequency-domain fluorescence imaging components into a Siemens Inveon scanner. We performed a performance evaluation of the developed imaging system by using the developed regularization-free high-order radiative-transfer-based reconstruction algorithm and custom solid phantoms. Our results show that frequency-domain photon migration (FDPM) fluorescence tomography can achieve better tomographic images with less artifacts and more precise fluorescent source localization compared to the continuous-wave counterpart. The developed multimodal tomographic imaging system provides a powerful tool for translational biomedical research.","PeriodicalId":75242,"journal":{"name":"Translational biophotonics","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance evaluation of fluorescence tomography in a Siemens Inveon multimodality scanner\",\"authors\":\"Yujie Lu, C. Darne, I. Tan, B. Zhu, J. Rasmussen, E. Sevick-Muraca\",\"doi\":\"10.1117/12.2057818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A tri-modal (PET/CT/Optical) small animal tomographic imaging system was developed by integrating our advanced non-contact intensified CCD (ICCD) frequency-domain fluorescence imaging components into a Siemens Inveon scanner. We performed a performance evaluation of the developed imaging system by using the developed regularization-free high-order radiative-transfer-based reconstruction algorithm and custom solid phantoms. Our results show that frequency-domain photon migration (FDPM) fluorescence tomography can achieve better tomographic images with less artifacts and more precise fluorescent source localization compared to the continuous-wave counterpart. The developed multimodal tomographic imaging system provides a powerful tool for translational biomedical research.\",\"PeriodicalId\":75242,\"journal\":{\"name\":\"Translational biophotonics\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2057818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2057818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance evaluation of fluorescence tomography in a Siemens Inveon multimodality scanner
A tri-modal (PET/CT/Optical) small animal tomographic imaging system was developed by integrating our advanced non-contact intensified CCD (ICCD) frequency-domain fluorescence imaging components into a Siemens Inveon scanner. We performed a performance evaluation of the developed imaging system by using the developed regularization-free high-order radiative-transfer-based reconstruction algorithm and custom solid phantoms. Our results show that frequency-domain photon migration (FDPM) fluorescence tomography can achieve better tomographic images with less artifacts and more precise fluorescent source localization compared to the continuous-wave counterpart. The developed multimodal tomographic imaging system provides a powerful tool for translational biomedical research.