调和太阳黑子磁场的垂直和水平梯度

V. Bommier
{"title":"调和太阳黑子磁场的垂直和水平梯度","authors":"V. Bommier","doi":"10.1155/2013/195403","DOIUrl":null,"url":null,"abstract":"In the literature, we found 15 references showing that the sunspot photospheric magnetic field vertical gradient is on the order of 3-4 G/km, with field strength decreasing with height, whereas the horizontal gradient is nine times weaker on the order of 0.4-0.5 G/km. This is confirmed by our recent THEMIS observations. As a consequence, the vanishing of is not realized. In other words, a loss of magnetic flux is observed with increasing height, which is not compensated for by an increase of the horizontal flux. We show that the lack of spatial resolution, vertical as well as horizontal, cannot be held responsible for the nonvanishing observed . The present paper is devoted to the investigation of this problem. We investigate how the magnetic field is influenced by the plasma anisotropy due to the stratification, which is responsible for an “aspect ratio” between horizontal and vertical typical lengths. On the example of our THEMIS observations, made of two spectral lines formed at two different depths, which enables the retrieval of the three components entering , it is shown that once this aspect ratio is applied, the rescaled vanishes, which suggests a new methodology for MHD modeling in the photosphere.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"33 1","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Reconciliating the Vertical and Horizontal Gradients of the Sunspot Magnetic Field\",\"authors\":\"V. Bommier\",\"doi\":\"10.1155/2013/195403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the literature, we found 15 references showing that the sunspot photospheric magnetic field vertical gradient is on the order of 3-4 G/km, with field strength decreasing with height, whereas the horizontal gradient is nine times weaker on the order of 0.4-0.5 G/km. This is confirmed by our recent THEMIS observations. As a consequence, the vanishing of is not realized. In other words, a loss of magnetic flux is observed with increasing height, which is not compensated for by an increase of the horizontal flux. We show that the lack of spatial resolution, vertical as well as horizontal, cannot be held responsible for the nonvanishing observed . The present paper is devoted to the investigation of this problem. We investigate how the magnetic field is influenced by the plasma anisotropy due to the stratification, which is responsible for an “aspect ratio” between horizontal and vertical typical lengths. On the example of our THEMIS observations, made of two spectral lines formed at two different depths, which enables the retrieval of the three components entering , it is shown that once this aspect ratio is applied, the rescaled vanishes, which suggests a new methodology for MHD modeling in the photosphere.\",\"PeriodicalId\":20143,\"journal\":{\"name\":\"Physics Research International\",\"volume\":\"33 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Research International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/195403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/195403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在文献中,我们发现15篇文献表明,太阳黑子光球磁场垂直梯度约为3-4 G/km,场强随高度的增加而减小,而水平梯度约为0.4-0.5 G/km,弱9倍。我们最近的THEMIS观测证实了这一点。因此,消失并没有实现。换句话说,随着高度的增加,可以观察到磁通量的损失,而这种损失不能通过水平通量的增加来补偿。我们表明,缺乏空间分辨率,垂直以及水平,不能负责观察到的不消失。本文致力于这个问题的研究。我们研究了磁场如何受到等离子体各向异性的影响,这是由于分层造成的,这是水平和垂直典型长度之间的“纵横比”的原因。以我们的THEMIS观测为例,由在两个不同深度形成的两条光谱线组成,可以检索进入的三个分量,结果表明,一旦应用该宽高比,重新缩放的结果就会消失,这为光球中的MHD建模提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconciliating the Vertical and Horizontal Gradients of the Sunspot Magnetic Field
In the literature, we found 15 references showing that the sunspot photospheric magnetic field vertical gradient is on the order of 3-4 G/km, with field strength decreasing with height, whereas the horizontal gradient is nine times weaker on the order of 0.4-0.5 G/km. This is confirmed by our recent THEMIS observations. As a consequence, the vanishing of is not realized. In other words, a loss of magnetic flux is observed with increasing height, which is not compensated for by an increase of the horizontal flux. We show that the lack of spatial resolution, vertical as well as horizontal, cannot be held responsible for the nonvanishing observed . The present paper is devoted to the investigation of this problem. We investigate how the magnetic field is influenced by the plasma anisotropy due to the stratification, which is responsible for an “aspect ratio” between horizontal and vertical typical lengths. On the example of our THEMIS observations, made of two spectral lines formed at two different depths, which enables the retrieval of the three components entering , it is shown that once this aspect ratio is applied, the rescaled vanishes, which suggests a new methodology for MHD modeling in the photosphere.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信