S. Vršič, Mojca Gumzej, Mario Lešnik, Andrej Perko, B. Pulko
{"title":"依赖砧木的葡萄嫁接中铜的生物积累和转运模式","authors":"S. Vršič, Mojca Gumzej, Mario Lešnik, Andrej Perko, B. Pulko","doi":"10.3390/agriculture13091768","DOIUrl":null,"url":null,"abstract":"The long-term use of copper (Cu) fungicides in viticulture in Europe has led to Cu accumulation in vineyard top soils. However, less is known about the accumulation of Cu in grapevine grafts after the callusing process/before planting in the nursery. This paper presents the capacity of 5BB and SO4 rootstocks to accumulate Cu, as well as the patterns of translocation in the grafts. After heat forcing (callusing), the grapevine grafts of Sauvignon Blanc on 5BB and SO4 rootstocks were grown in pots for six months in a glasshouse and exposed to various Cu formulations (Cu-oxychloride, Cu-gluconate) and concentrations in peat (50, 150, 500, and 1000 mg Cu of dry weight (DW)). In addition to monitoring the shoot growth dynamics and analyzing the copper content in graft organs, bioaccumulation (BAFs) and translocation factors (TFs) of Cu were calculated. The mean Cu concentrations were ranked as follows: roots (15–164) > rootstock trunks (8–38) > canes (5–21) mg kg−1 DW. The Cu concentrations depended on the Cu formulation and concentration in the substrate. Higher Cu content was found in the roots of both rootstocks (5BB and SO4, 23–155 and 15–164 mg kg−1 DW, respectively) and the lowest in the canes (less than 10 mg kg−1 DW) of grafts grown in Cu-oxychloride-treated peat. Based on the BAFs and TFs, both rootstocks could be considered as Cu exclusive. A higher translocation rate was determined in systemic Cu-gluconate and SO4 rootstock. With shoot length measurements, the significant inhibitory effects of Cu on grapevine grafts growth could not be confirmed, despite the inhibitory effects that were clearly expressed in the first two months of growth. Soils containing more than 500 mg Cu/kg−1 are less suitable for growing vine grafts.","PeriodicalId":48587,"journal":{"name":"Agriculture-Basel","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patterns of Copper Bioaccumulation and Translocation in Grapevine Grafts Depending on Rootstocks\",\"authors\":\"S. Vršič, Mojca Gumzej, Mario Lešnik, Andrej Perko, B. Pulko\",\"doi\":\"10.3390/agriculture13091768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The long-term use of copper (Cu) fungicides in viticulture in Europe has led to Cu accumulation in vineyard top soils. However, less is known about the accumulation of Cu in grapevine grafts after the callusing process/before planting in the nursery. This paper presents the capacity of 5BB and SO4 rootstocks to accumulate Cu, as well as the patterns of translocation in the grafts. After heat forcing (callusing), the grapevine grafts of Sauvignon Blanc on 5BB and SO4 rootstocks were grown in pots for six months in a glasshouse and exposed to various Cu formulations (Cu-oxychloride, Cu-gluconate) and concentrations in peat (50, 150, 500, and 1000 mg Cu of dry weight (DW)). In addition to monitoring the shoot growth dynamics and analyzing the copper content in graft organs, bioaccumulation (BAFs) and translocation factors (TFs) of Cu were calculated. The mean Cu concentrations were ranked as follows: roots (15–164) > rootstock trunks (8–38) > canes (5–21) mg kg−1 DW. The Cu concentrations depended on the Cu formulation and concentration in the substrate. Higher Cu content was found in the roots of both rootstocks (5BB and SO4, 23–155 and 15–164 mg kg−1 DW, respectively) and the lowest in the canes (less than 10 mg kg−1 DW) of grafts grown in Cu-oxychloride-treated peat. Based on the BAFs and TFs, both rootstocks could be considered as Cu exclusive. A higher translocation rate was determined in systemic Cu-gluconate and SO4 rootstock. With shoot length measurements, the significant inhibitory effects of Cu on grapevine grafts growth could not be confirmed, despite the inhibitory effects that were clearly expressed in the first two months of growth. Soils containing more than 500 mg Cu/kg−1 are less suitable for growing vine grafts.\",\"PeriodicalId\":48587,\"journal\":{\"name\":\"Agriculture-Basel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture-Basel\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/agriculture13091768\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agriculture13091768","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Patterns of Copper Bioaccumulation and Translocation in Grapevine Grafts Depending on Rootstocks
The long-term use of copper (Cu) fungicides in viticulture in Europe has led to Cu accumulation in vineyard top soils. However, less is known about the accumulation of Cu in grapevine grafts after the callusing process/before planting in the nursery. This paper presents the capacity of 5BB and SO4 rootstocks to accumulate Cu, as well as the patterns of translocation in the grafts. After heat forcing (callusing), the grapevine grafts of Sauvignon Blanc on 5BB and SO4 rootstocks were grown in pots for six months in a glasshouse and exposed to various Cu formulations (Cu-oxychloride, Cu-gluconate) and concentrations in peat (50, 150, 500, and 1000 mg Cu of dry weight (DW)). In addition to monitoring the shoot growth dynamics and analyzing the copper content in graft organs, bioaccumulation (BAFs) and translocation factors (TFs) of Cu were calculated. The mean Cu concentrations were ranked as follows: roots (15–164) > rootstock trunks (8–38) > canes (5–21) mg kg−1 DW. The Cu concentrations depended on the Cu formulation and concentration in the substrate. Higher Cu content was found in the roots of both rootstocks (5BB and SO4, 23–155 and 15–164 mg kg−1 DW, respectively) and the lowest in the canes (less than 10 mg kg−1 DW) of grafts grown in Cu-oxychloride-treated peat. Based on the BAFs and TFs, both rootstocks could be considered as Cu exclusive. A higher translocation rate was determined in systemic Cu-gluconate and SO4 rootstock. With shoot length measurements, the significant inhibitory effects of Cu on grapevine grafts growth could not be confirmed, despite the inhibitory effects that were clearly expressed in the first two months of growth. Soils containing more than 500 mg Cu/kg−1 are less suitable for growing vine grafts.
期刊介绍:
Agriculture (ISSN 2077-0472) is an international and cross-disciplinary scholarly and scientific open access journal on the science of cultivating the soil, growing, harvesting crops, and raising livestock. We will aim to look at production, processing, marketing and use of foods, fibers, plants and animals. The journal Agriculturewill publish reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.