{"title":"含腐蚀性成分的气液混合物输送管道变形过程的数学建模","authors":"A. Oliynyk, L. Feshanych, G. Grygorchuk","doi":"10.5604/01.3001.0015.9995","DOIUrl":null,"url":null,"abstract":"Mathematical modelling of the process of deformation of pipeline, transporting gas-liquid mixtures with aggressive components and a comparative analysis of the value of the specified velocity depending on the dynamic viscosity of the multicomponent gas mixture is conducted.\n\nA mathematical model of the process of leakage of the transported product due to the loss of tightness of the pipe based on the system of Navier-Stokes equations with boundary conditions with considering the geometry of the leakage zones and the value of the leakage rate is implemented.\n\nModels of the process of deformation of the pipeline due to displacements of a certain set of surface points by specifying different types of functions, describing the geometry of deformed sections are constructed. The method of calculating the tensely deformed state based on the data on the movement of surface points by comparing different ways of setting functions, taking into account the actual configuration of sections and axes is improved. The change of flow characteristics in the pipeline when changing the structure of the mix, transported by studying of influence of change of dynamic viscosity is investigated; The method of calculating the rate of leakage of the mixture in case of loss of tightness due to the occurrence of critical stresses in the pipe material is improved.\n\nBuilding a model of the deformation process, information about the nature, duration of forces and loads affecting the pipeline is not used. The law of the pipeline movement was constructed having taken into account the deformation of the sections in three directions. The necessity to take wind loads into account, estimating the real tensely deformed state was displayed.\n\nUsing the method of calculating the tensely deformed state based on the data on the movement of surface points by comparing different ways of setting functions, taking into account the actual configuration of sections and axes.\n\nAccording to the computational algorithms created on the basis of the specified models, the calculations of the tense state of the pipelines and the flow rate of the mixture depending on its composition were performed. An analysis of the results of calculations - tense intensity and flow rate depending on the dynamic viscosity of the mixture is performed. The influence on the flow parameters - the flow rate of the mixture and the force of hydraulic resistance - changes in the dynamic viscosity of the mixture is analyzed.\n\n","PeriodicalId":14825,"journal":{"name":"Journal of Achievements in Materials and Manufacturing Engineering","volume":"64 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modelling of the process of pipeline deformation through which gas-liquid mixtures with aggressive components are transported\",\"authors\":\"A. Oliynyk, L. Feshanych, G. Grygorchuk\",\"doi\":\"10.5604/01.3001.0015.9995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mathematical modelling of the process of deformation of pipeline, transporting gas-liquid mixtures with aggressive components and a comparative analysis of the value of the specified velocity depending on the dynamic viscosity of the multicomponent gas mixture is conducted.\\n\\nA mathematical model of the process of leakage of the transported product due to the loss of tightness of the pipe based on the system of Navier-Stokes equations with boundary conditions with considering the geometry of the leakage zones and the value of the leakage rate is implemented.\\n\\nModels of the process of deformation of the pipeline due to displacements of a certain set of surface points by specifying different types of functions, describing the geometry of deformed sections are constructed. The method of calculating the tensely deformed state based on the data on the movement of surface points by comparing different ways of setting functions, taking into account the actual configuration of sections and axes is improved. The change of flow characteristics in the pipeline when changing the structure of the mix, transported by studying of influence of change of dynamic viscosity is investigated; The method of calculating the rate of leakage of the mixture in case of loss of tightness due to the occurrence of critical stresses in the pipe material is improved.\\n\\nBuilding a model of the deformation process, information about the nature, duration of forces and loads affecting the pipeline is not used. The law of the pipeline movement was constructed having taken into account the deformation of the sections in three directions. The necessity to take wind loads into account, estimating the real tensely deformed state was displayed.\\n\\nUsing the method of calculating the tensely deformed state based on the data on the movement of surface points by comparing different ways of setting functions, taking into account the actual configuration of sections and axes.\\n\\nAccording to the computational algorithms created on the basis of the specified models, the calculations of the tense state of the pipelines and the flow rate of the mixture depending on its composition were performed. An analysis of the results of calculations - tense intensity and flow rate depending on the dynamic viscosity of the mixture is performed. The influence on the flow parameters - the flow rate of the mixture and the force of hydraulic resistance - changes in the dynamic viscosity of the mixture is analyzed.\\n\\n\",\"PeriodicalId\":14825,\"journal\":{\"name\":\"Journal of Achievements in Materials and Manufacturing Engineering\",\"volume\":\"64 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Achievements in Materials and Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0015.9995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Achievements in Materials and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0015.9995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Mathematical modelling of the process of pipeline deformation through which gas-liquid mixtures with aggressive components are transported
Mathematical modelling of the process of deformation of pipeline, transporting gas-liquid mixtures with aggressive components and a comparative analysis of the value of the specified velocity depending on the dynamic viscosity of the multicomponent gas mixture is conducted.
A mathematical model of the process of leakage of the transported product due to the loss of tightness of the pipe based on the system of Navier-Stokes equations with boundary conditions with considering the geometry of the leakage zones and the value of the leakage rate is implemented.
Models of the process of deformation of the pipeline due to displacements of a certain set of surface points by specifying different types of functions, describing the geometry of deformed sections are constructed. The method of calculating the tensely deformed state based on the data on the movement of surface points by comparing different ways of setting functions, taking into account the actual configuration of sections and axes is improved. The change of flow characteristics in the pipeline when changing the structure of the mix, transported by studying of influence of change of dynamic viscosity is investigated; The method of calculating the rate of leakage of the mixture in case of loss of tightness due to the occurrence of critical stresses in the pipe material is improved.
Building a model of the deformation process, information about the nature, duration of forces and loads affecting the pipeline is not used. The law of the pipeline movement was constructed having taken into account the deformation of the sections in three directions. The necessity to take wind loads into account, estimating the real tensely deformed state was displayed.
Using the method of calculating the tensely deformed state based on the data on the movement of surface points by comparing different ways of setting functions, taking into account the actual configuration of sections and axes.
According to the computational algorithms created on the basis of the specified models, the calculations of the tense state of the pipelines and the flow rate of the mixture depending on its composition were performed. An analysis of the results of calculations - tense intensity and flow rate depending on the dynamic viscosity of the mixture is performed. The influence on the flow parameters - the flow rate of the mixture and the force of hydraulic resistance - changes in the dynamic viscosity of the mixture is analyzed.
期刊介绍:
The Journal of Achievements in Materials and Manufacturing Engineering has been published by the Association for Computational Materials Science and Surface Engineering in collaboration with the World Academy of Materials and Manufacturing Engineering WAMME and the Section Metallic Materials of the Committee of Materials Science of the Polish Academy of Sciences as a monthly. It has 12 points which was received during the evaluation by the Ministry of Science and Higher Education journals and ICV 2017:100 on the ICI Journals Master list announced by the Index Copernicus. It is a continuation of "Proceedings on Achievements in Mechanical and Materials Engineering" published in 1992-2005. Scope: Materials[...] Properties[...] Methodology of Research[...] Analysis and Modelling[...] Manufacturing and Processingv Biomedical and Dental Engineering and Materials[...] Cleaner Production[...] Industrial Mangement and Organisation [...] Education and Research Trends[...]