基于角余弦的混沌局部加权线性预测算法

Xing Mian, Ji Ling, Wang Guanqin
{"title":"基于角余弦的混沌局部加权线性预测算法","authors":"Xing Mian,&nbsp;Ji Ling,&nbsp;Wang Guanqin","doi":"10.1016/j.sepro.2012.04.052","DOIUrl":null,"url":null,"abstract":"<div><p>This paper expounds the limitations of the Euclidean distance as the measure between points similarity. According to the limitations of the original algorithm presented, chaotic local weighted linear forecast algorithm based on the angle cosine is proposed, which replaces Euclidean distance by cosine in the measurement of the similarity between phase points. In the process of parameters identification in the linear fitting, replace the Euclidean distance by the module and angle of vector as the optimal object. This algorithm overcomes the disadvantages of chaotic local prediction algorithm based on the Euclidean distance, and has obtained good effect in power load forecasting which is sensitive to the climate.</p></div>","PeriodicalId":101207,"journal":{"name":"Systems Engineering Procedia","volume":"5 ","pages":"Pages 334-339"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.sepro.2012.04.052","citationCount":"5","resultStr":"{\"title\":\"Chaotic Local Weighted Linear Prediction Algorithms Based on the Angle Cosine\",\"authors\":\"Xing Mian,&nbsp;Ji Ling,&nbsp;Wang Guanqin\",\"doi\":\"10.1016/j.sepro.2012.04.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper expounds the limitations of the Euclidean distance as the measure between points similarity. According to the limitations of the original algorithm presented, chaotic local weighted linear forecast algorithm based on the angle cosine is proposed, which replaces Euclidean distance by cosine in the measurement of the similarity between phase points. In the process of parameters identification in the linear fitting, replace the Euclidean distance by the module and angle of vector as the optimal object. This algorithm overcomes the disadvantages of chaotic local prediction algorithm based on the Euclidean distance, and has obtained good effect in power load forecasting which is sensitive to the climate.</p></div>\",\"PeriodicalId\":101207,\"journal\":{\"name\":\"Systems Engineering Procedia\",\"volume\":\"5 \",\"pages\":\"Pages 334-339\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.sepro.2012.04.052\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Engineering Procedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211381912000951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211381912000951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

阐述了欧几里得距离作为点间相似性度量的局限性。针对原算法的局限性,提出了基于角余弦的混沌局部加权线性预测算法,用余弦代替欧氏距离测量相点之间的相似度。在线性拟合的参数辨识过程中,用矢量的模和角度代替欧氏距离作为最优目标。该算法克服了基于欧氏距离的混沌局部预测算法的缺点,在对气候敏感的电力负荷预测中取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaotic Local Weighted Linear Prediction Algorithms Based on the Angle Cosine

This paper expounds the limitations of the Euclidean distance as the measure between points similarity. According to the limitations of the original algorithm presented, chaotic local weighted linear forecast algorithm based on the angle cosine is proposed, which replaces Euclidean distance by cosine in the measurement of the similarity between phase points. In the process of parameters identification in the linear fitting, replace the Euclidean distance by the module and angle of vector as the optimal object. This algorithm overcomes the disadvantages of chaotic local prediction algorithm based on the Euclidean distance, and has obtained good effect in power load forecasting which is sensitive to the climate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信