Peyman K. Aspoukeh, Azeez Abdullah Barzinjy, S. M. Hamad
{"title":"绿色合成种子层对化学浴法制备ZnO纳米棒阵列的影响","authors":"Peyman K. Aspoukeh, Azeez Abdullah Barzinjy, S. M. Hamad","doi":"10.1557/s43578-023-01103-9","DOIUrl":null,"url":null,"abstract":"ZnO nanorods were synthesized via CBD method on a seed layer coated substrate. Prior to growth, a glass substrate was seeded with the biosynthesized ZnO nanoparticles using Thymus Kotschyanus extract. XRD confirmed that for the sample within higher precursor concentration, the (100) peak is noticeably shorter, and the majority of the nanorods are grown in the (002) plane, indicating crystal growth are along the c-axis. However, the nanorods are mostly aligned along the (100), (002), and (101) planes for samples at 0.02 and 0.05 Mol precursor concentrations. The presence of ZnO nanorods within hexagonal-wurtzite structure, is favored orientation along the c-axis. As the precursor concentrations of the seed layer increased from 0.02 to 0.1 Mol, the dispersion of ZnO nanoparticles became denser, the maximum absorption peaks red-shifted, from 395 to 420 nm, and the bandgap energy of the biosynthesized ZnO decreased from 3.59 to 3.38 eV, with increasing precursor concentrations.","PeriodicalId":14079,"journal":{"name":"International Journal of Materials Research","volume":"73 1","pages":"3801 - 3813"},"PeriodicalIF":0.7000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of green synthesized seed layer on ZnO nanorod arrays grown by chemical bath deposition\",\"authors\":\"Peyman K. Aspoukeh, Azeez Abdullah Barzinjy, S. M. Hamad\",\"doi\":\"10.1557/s43578-023-01103-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ZnO nanorods were synthesized via CBD method on a seed layer coated substrate. Prior to growth, a glass substrate was seeded with the biosynthesized ZnO nanoparticles using Thymus Kotschyanus extract. XRD confirmed that for the sample within higher precursor concentration, the (100) peak is noticeably shorter, and the majority of the nanorods are grown in the (002) plane, indicating crystal growth are along the c-axis. However, the nanorods are mostly aligned along the (100), (002), and (101) planes for samples at 0.02 and 0.05 Mol precursor concentrations. The presence of ZnO nanorods within hexagonal-wurtzite structure, is favored orientation along the c-axis. As the precursor concentrations of the seed layer increased from 0.02 to 0.1 Mol, the dispersion of ZnO nanoparticles became denser, the maximum absorption peaks red-shifted, from 395 to 420 nm, and the bandgap energy of the biosynthesized ZnO decreased from 3.59 to 3.38 eV, with increasing precursor concentrations.\",\"PeriodicalId\":14079,\"journal\":{\"name\":\"International Journal of Materials Research\",\"volume\":\"73 1\",\"pages\":\"3801 - 3813\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-023-01103-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-023-01103-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
The impact of green synthesized seed layer on ZnO nanorod arrays grown by chemical bath deposition
ZnO nanorods were synthesized via CBD method on a seed layer coated substrate. Prior to growth, a glass substrate was seeded with the biosynthesized ZnO nanoparticles using Thymus Kotschyanus extract. XRD confirmed that for the sample within higher precursor concentration, the (100) peak is noticeably shorter, and the majority of the nanorods are grown in the (002) plane, indicating crystal growth are along the c-axis. However, the nanorods are mostly aligned along the (100), (002), and (101) planes for samples at 0.02 and 0.05 Mol precursor concentrations. The presence of ZnO nanorods within hexagonal-wurtzite structure, is favored orientation along the c-axis. As the precursor concentrations of the seed layer increased from 0.02 to 0.1 Mol, the dispersion of ZnO nanoparticles became denser, the maximum absorption peaks red-shifted, from 395 to 420 nm, and the bandgap energy of the biosynthesized ZnO decreased from 3.59 to 3.38 eV, with increasing precursor concentrations.
期刊介绍:
The International Journal of Materials Research (IJMR) publishes original high quality experimental and theoretical papers and reviews on basic and applied research in the field of materials science and engineering, with focus on synthesis, processing, constitution, and properties of all classes of materials. Particular emphasis is placed on microstructural design, phase relations, computational thermodynamics, and kinetics at the nano to macro scale. Contributions may also focus on progress in advanced characterization techniques. All articles are subject to thorough, independent peer review.