阈值窗口的缩放限制:单调布尔函数何时翻转其结果?

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
Daniel Ahlberg, J. Steif, G. Pete
{"title":"阈值窗口的缩放限制:单调布尔函数何时翻转其结果?","authors":"Daniel Ahlberg, J. Steif, G. Pete","doi":"10.1214/16-AIHP786","DOIUrl":null,"url":null,"abstract":"Consider a monotone Boolean function f:{0,1}^n \\to {0,1} and the canonical monotone coupling \n{eta_p:p in [0,1]} of an element in {0,1}^n chosen according to product measure with intensity \np in [0,1]. The random point p in [0,1] where f(eta_p) flips from 0 to 1 is often concentrated \nnear a particular point, thus exhibiting a threshold phenomenon. For a sequence of such Boolean functions, \nwe peer closely into this threshold window and consider, for large n, the limiting distribution (properly \nnormalized to be nondegenerate) of this random point where the Boolean function switches from being 0 to 1. \nWe determine this distribution for a number of the Boolean functions which are typically studied and pay \nparticular attention to the functions corresponding to iterated majorityand percolation crossings. It turns out \nthat these limiting distributions have quite varying behavior. In fact, we show that any nondegenerate \nprobability measure on R arises in this way for some sequence of Boolean functions.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"75 1","pages":"2135-2161"},"PeriodicalIF":1.2000,"publicationDate":"2014-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Scaling limits for the threshold window: When does a monotone Boolean function flip its outcome?\",\"authors\":\"Daniel Ahlberg, J. Steif, G. Pete\",\"doi\":\"10.1214/16-AIHP786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a monotone Boolean function f:{0,1}^n \\\\to {0,1} and the canonical monotone coupling \\n{eta_p:p in [0,1]} of an element in {0,1}^n chosen according to product measure with intensity \\np in [0,1]. The random point p in [0,1] where f(eta_p) flips from 0 to 1 is often concentrated \\nnear a particular point, thus exhibiting a threshold phenomenon. For a sequence of such Boolean functions, \\nwe peer closely into this threshold window and consider, for large n, the limiting distribution (properly \\nnormalized to be nondegenerate) of this random point where the Boolean function switches from being 0 to 1. \\nWe determine this distribution for a number of the Boolean functions which are typically studied and pay \\nparticular attention to the functions corresponding to iterated majorityand percolation crossings. It turns out \\nthat these limiting distributions have quite varying behavior. In fact, we show that any nondegenerate \\nprobability measure on R arises in this way for some sequence of Boolean functions.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"75 1\",\"pages\":\"2135-2161\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2014-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/16-AIHP786\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/16-AIHP786","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 8

摘要

考虑一个单调布尔函数f:{0,1}^n \到{0,1},以及{0,1}^n中一个元素的正则单调耦合{eta_p:p in[0,1]},该元素是根据强度p in[0,1]中的积测度选择的。在[0,1]中,f(eta_p)从0翻转到1的随机点p往往集中在一个特定点附近,从而表现出阈值现象。对于这样的布尔函数序列,我们仔细观察这个阈值窗口,并考虑,对于较大的n,这个布尔函数从0切换到1的随机点的极限分布(适当规范化为非退化)。我们确定了许多布尔函数的这种分布,这些函数通常被研究,并特别注意与迭代多数和渗透交叉相对应的函数。事实证明,这些极限分布有很多不同的行为。事实上,我们证明了对于布尔函数序列,R上的任何非退化概率测度都以这种方式产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling limits for the threshold window: When does a monotone Boolean function flip its outcome?
Consider a monotone Boolean function f:{0,1}^n \to {0,1} and the canonical monotone coupling {eta_p:p in [0,1]} of an element in {0,1}^n chosen according to product measure with intensity p in [0,1]. The random point p in [0,1] where f(eta_p) flips from 0 to 1 is often concentrated near a particular point, thus exhibiting a threshold phenomenon. For a sequence of such Boolean functions, we peer closely into this threshold window and consider, for large n, the limiting distribution (properly normalized to be nondegenerate) of this random point where the Boolean function switches from being 0 to 1. We determine this distribution for a number of the Boolean functions which are typically studied and pay particular attention to the functions corresponding to iterated majorityand percolation crossings. It turns out that these limiting distributions have quite varying behavior. In fact, we show that any nondegenerate probability measure on R arises in this way for some sequence of Boolean functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信