{"title":"基于预放大非负约束邻域嵌入的人脸图像超分辨率重建","authors":"Xin Yang, D. Liu, Dake Zhou, S. Fei","doi":"10.24425/bpas.2018.125937","DOIUrl":null,"url":null,"abstract":"Bull. Pol. Ac.: Tech. 66(6) 2018 Abstract. The traditional super-resolution (SR) reconstruction algorithm based on neighborhood embedding preserves the local geometric structure of image block manifold to reconstruct high-resolution (HR) manifold. However, when the magnification is large, the low resolution (LR) image is seriously degraded and most of the information is lost after down-sampling. The neighborhood relation of the LR manifold can not reflect the inherent data structure. In order to solve the problem effectively, we propose a face image SR algorithm based on pre-amplification non-negative restricted neighborhood embedding. In the training phase, the LR image is pre-amplified so that there are more similar manifold structures between the HR and LR resolution images. The constraints of the reconstructed coefficients are loosened and the HR image blocks are iteratively updated to obtain the reconstructed weights. The experimental results show that the proposed method has a better reconstruction effect compared with some traditional learning algorithms.","PeriodicalId":55299,"journal":{"name":"Bulletin of the Polish Academy of Sciences-Technical Sciences","volume":"47 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Super-resolution reconstruction of face images based on pre-amplification non-negative restricted neighborhood embedding\",\"authors\":\"Xin Yang, D. Liu, Dake Zhou, S. Fei\",\"doi\":\"10.24425/bpas.2018.125937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bull. Pol. Ac.: Tech. 66(6) 2018 Abstract. The traditional super-resolution (SR) reconstruction algorithm based on neighborhood embedding preserves the local geometric structure of image block manifold to reconstruct high-resolution (HR) manifold. However, when the magnification is large, the low resolution (LR) image is seriously degraded and most of the information is lost after down-sampling. The neighborhood relation of the LR manifold can not reflect the inherent data structure. In order to solve the problem effectively, we propose a face image SR algorithm based on pre-amplification non-negative restricted neighborhood embedding. In the training phase, the LR image is pre-amplified so that there are more similar manifold structures between the HR and LR resolution images. The constraints of the reconstructed coefficients are loosened and the HR image blocks are iteratively updated to obtain the reconstructed weights. The experimental results show that the proposed method has a better reconstruction effect compared with some traditional learning algorithms.\",\"PeriodicalId\":55299,\"journal\":{\"name\":\"Bulletin of the Polish Academy of Sciences-Technical Sciences\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Polish Academy of Sciences-Technical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24425/bpas.2018.125937\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Polish Academy of Sciences-Technical Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/bpas.2018.125937","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Super-resolution reconstruction of face images based on pre-amplification non-negative restricted neighborhood embedding
Bull. Pol. Ac.: Tech. 66(6) 2018 Abstract. The traditional super-resolution (SR) reconstruction algorithm based on neighborhood embedding preserves the local geometric structure of image block manifold to reconstruct high-resolution (HR) manifold. However, when the magnification is large, the low resolution (LR) image is seriously degraded and most of the information is lost after down-sampling. The neighborhood relation of the LR manifold can not reflect the inherent data structure. In order to solve the problem effectively, we propose a face image SR algorithm based on pre-amplification non-negative restricted neighborhood embedding. In the training phase, the LR image is pre-amplified so that there are more similar manifold structures between the HR and LR resolution images. The constraints of the reconstructed coefficients are loosened and the HR image blocks are iteratively updated to obtain the reconstructed weights. The experimental results show that the proposed method has a better reconstruction effect compared with some traditional learning algorithms.
期刊介绍:
The Bulletin of the Polish Academy of Sciences: Technical Sciences is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred:
Artificial and Computational Intelligence,
Biomedical Engineering and Biotechnology,
Civil Engineering,
Control, Informatics and Robotics,
Electronics, Telecommunication and Optoelectronics,
Mechanical and Aeronautical Engineering, Thermodynamics,
Material Science and Nanotechnology,
Power Systems and Power Electronics.