{"title":"novolac基聚合物-纳米银杂化物:合成、表征及抗菌评价","authors":"Samaresh Ghosh, M. Acharyya, S. Mandal","doi":"10.2174/2452271602666181001123210","DOIUrl":null,"url":null,"abstract":"Hybrids, composed of silver nanoparticles (AgNPs) dispersed inside a polymer matrix thus combining properties of both the components offer antibacterial activity and several advantages. Nevertheless, the development of antibacterial hybrid material comprising both novolac type phenolic resin and AgNPs remains one of the untouched issues in human healthcare.We report herein the simple preparation of hybrid derived from functionalized novolac resin and AgNPs. The hybrid was tested for antibacterial activity towards Gram-positive and Gramnegative bacteria.Preparation and characterization of functionalized novolac resin and hybrid were achieved. Gram-positive bacteria (Staphylococcus aureus MTCC 3160, Staphylococcus epidermidis NCIM2493, Bacillus subtilis) and Gram-negative bacteria (Pseudomonas aeruginosa ATCC27853, Escherichia coli) were used to test the bactericidal efficiency of hybrid. The antibacterial effectiveness of hybrid was determined in terms of the minimum inhibitory concentration (MIC). In addition, treatment with hybrid caused cytoplasmic contents leakage evidencing membrane damage.The hybrid developed thus could provide opportunities to fabricate a wide range of antibacterial functional materials for different purposes in human health associated sectors.","PeriodicalId":10768,"journal":{"name":"Current Applied Polymer Science","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novolac-based Polymer-silver Nanoparticles Hybrid: Synthesis, Characterization and Antibacterial Evaluation\",\"authors\":\"Samaresh Ghosh, M. Acharyya, S. Mandal\",\"doi\":\"10.2174/2452271602666181001123210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrids, composed of silver nanoparticles (AgNPs) dispersed inside a polymer matrix thus combining properties of both the components offer antibacterial activity and several advantages. Nevertheless, the development of antibacterial hybrid material comprising both novolac type phenolic resin and AgNPs remains one of the untouched issues in human healthcare.We report herein the simple preparation of hybrid derived from functionalized novolac resin and AgNPs. The hybrid was tested for antibacterial activity towards Gram-positive and Gramnegative bacteria.Preparation and characterization of functionalized novolac resin and hybrid were achieved. Gram-positive bacteria (Staphylococcus aureus MTCC 3160, Staphylococcus epidermidis NCIM2493, Bacillus subtilis) and Gram-negative bacteria (Pseudomonas aeruginosa ATCC27853, Escherichia coli) were used to test the bactericidal efficiency of hybrid. The antibacterial effectiveness of hybrid was determined in terms of the minimum inhibitory concentration (MIC). In addition, treatment with hybrid caused cytoplasmic contents leakage evidencing membrane damage.The hybrid developed thus could provide opportunities to fabricate a wide range of antibacterial functional materials for different purposes in human health associated sectors.\",\"PeriodicalId\":10768,\"journal\":{\"name\":\"Current Applied Polymer Science\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Polymer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2452271602666181001123210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2452271602666181001123210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novolac-based Polymer-silver Nanoparticles Hybrid: Synthesis, Characterization and Antibacterial Evaluation
Hybrids, composed of silver nanoparticles (AgNPs) dispersed inside a polymer matrix thus combining properties of both the components offer antibacterial activity and several advantages. Nevertheless, the development of antibacterial hybrid material comprising both novolac type phenolic resin and AgNPs remains one of the untouched issues in human healthcare.We report herein the simple preparation of hybrid derived from functionalized novolac resin and AgNPs. The hybrid was tested for antibacterial activity towards Gram-positive and Gramnegative bacteria.Preparation and characterization of functionalized novolac resin and hybrid were achieved. Gram-positive bacteria (Staphylococcus aureus MTCC 3160, Staphylococcus epidermidis NCIM2493, Bacillus subtilis) and Gram-negative bacteria (Pseudomonas aeruginosa ATCC27853, Escherichia coli) were used to test the bactericidal efficiency of hybrid. The antibacterial effectiveness of hybrid was determined in terms of the minimum inhibitory concentration (MIC). In addition, treatment with hybrid caused cytoplasmic contents leakage evidencing membrane damage.The hybrid developed thus could provide opportunities to fabricate a wide range of antibacterial functional materials for different purposes in human health associated sectors.