{"title":"气候灾害下森林破坏的建模","authors":"P. Yiou, N. Viovy","doi":"10.5194/esd-2020-78","DOIUrl":null,"url":null,"abstract":"Abstract. Estimating the risk of collapse of forests due to extreme climate events is one of the challenges of adaptation to climate change. We adapt a concept from ruin theory, which is widespread in econometrics or the insurance industry, to design a growth/ruin model for trees, under climate hazards that can jeopardize their growth. This model is an elaboration of a classical Cramer-Lundberg ruin model that is used in the insurance industry. The model accounts for the interactions between physiological parameters of trees and the occurrence of climate hazards. The physiological parameters describe interannual growth rates and how trees react to hazards. The hazard parameters describe the probability distributions of occurrence and intensity of climate events. We focus on a drought/heatwave hazard. The goal of the paper is to determine the dependence of ruin and average growth probability distributions as a function of physiological and hazard parameters. From extensive Monte Carlo experiments, we show the existence of a threshold on the frequency of hazards beyond which forest ruin becomes certain in a centennial horizon. We also detect a small effect of strategies to cope with hazards. This paper is a proof-of-concept to quantify collapse (of forests) under climate change.\n","PeriodicalId":11466,"journal":{"name":"Earth System Dynamics Discussions","volume":"124 1","pages":"1-21"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling the Ruin of Forests under Climate Hazards\",\"authors\":\"P. Yiou, N. Viovy\",\"doi\":\"10.5194/esd-2020-78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Estimating the risk of collapse of forests due to extreme climate events is one of the challenges of adaptation to climate change. We adapt a concept from ruin theory, which is widespread in econometrics or the insurance industry, to design a growth/ruin model for trees, under climate hazards that can jeopardize their growth. This model is an elaboration of a classical Cramer-Lundberg ruin model that is used in the insurance industry. The model accounts for the interactions between physiological parameters of trees and the occurrence of climate hazards. The physiological parameters describe interannual growth rates and how trees react to hazards. The hazard parameters describe the probability distributions of occurrence and intensity of climate events. We focus on a drought/heatwave hazard. The goal of the paper is to determine the dependence of ruin and average growth probability distributions as a function of physiological and hazard parameters. From extensive Monte Carlo experiments, we show the existence of a threshold on the frequency of hazards beyond which forest ruin becomes certain in a centennial horizon. We also detect a small effect of strategies to cope with hazards. This paper is a proof-of-concept to quantify collapse (of forests) under climate change.\\n\",\"PeriodicalId\":11466,\"journal\":{\"name\":\"Earth System Dynamics Discussions\",\"volume\":\"124 1\",\"pages\":\"1-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Dynamics Discussions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/esd-2020-78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Dynamics Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/esd-2020-78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling the Ruin of Forests under Climate Hazards
Abstract. Estimating the risk of collapse of forests due to extreme climate events is one of the challenges of adaptation to climate change. We adapt a concept from ruin theory, which is widespread in econometrics or the insurance industry, to design a growth/ruin model for trees, under climate hazards that can jeopardize their growth. This model is an elaboration of a classical Cramer-Lundberg ruin model that is used in the insurance industry. The model accounts for the interactions between physiological parameters of trees and the occurrence of climate hazards. The physiological parameters describe interannual growth rates and how trees react to hazards. The hazard parameters describe the probability distributions of occurrence and intensity of climate events. We focus on a drought/heatwave hazard. The goal of the paper is to determine the dependence of ruin and average growth probability distributions as a function of physiological and hazard parameters. From extensive Monte Carlo experiments, we show the existence of a threshold on the frequency of hazards beyond which forest ruin becomes certain in a centennial horizon. We also detect a small effect of strategies to cope with hazards. This paper is a proof-of-concept to quantify collapse (of forests) under climate change.