T. Razzak, H. Xue, Zhanbo Xia, Seongmo Hwang, Asif Khan, W. Lu, S. Rajan
{"title":"用于高频应用的超宽带隙材料","authors":"T. Razzak, H. Xue, Zhanbo Xia, Seongmo Hwang, Asif Khan, W. Lu, S. Rajan","doi":"10.1109/IMWS-AMP.2018.8457144","DOIUrl":null,"url":null,"abstract":"Gallium Nitride electronics based on the AlGaN/GaN high electron mobility transistor structure is approaching intrinsic limits. Future mm-wave and THz technology requires highly efficient and linear amplifiers that can deliver high power density. This presentation will outline the potential and recent work of next-generation wide band gap transistors based on ultra-wide band gap semiconductors for high frequency applications. Detailed DC and high frequency 2-dimensional modeling of ultra-wide band gap semiconductor devices show that the predicted power density, gain, and efficiency of these devices have the potential to be better than cutting-edge GaN-based devices at mm-wave and THz frequencies. We will discuss the principal challenges for realization of these devices and outline the design and demonstration of advanced high Al-composition AlGaN based transistors, where researchers have used novel epitaxial designs to enable efficient injection and extraction of carriers. This has enabled the state-of-the-art current density and breakdown characteristics of AlGaN-channel devices to increase significantly in recent years.","PeriodicalId":6605,"journal":{"name":"2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)","volume":"38 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Ultra-wide band gap materials for high frequency applications\",\"authors\":\"T. Razzak, H. Xue, Zhanbo Xia, Seongmo Hwang, Asif Khan, W. Lu, S. Rajan\",\"doi\":\"10.1109/IMWS-AMP.2018.8457144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gallium Nitride electronics based on the AlGaN/GaN high electron mobility transistor structure is approaching intrinsic limits. Future mm-wave and THz technology requires highly efficient and linear amplifiers that can deliver high power density. This presentation will outline the potential and recent work of next-generation wide band gap transistors based on ultra-wide band gap semiconductors for high frequency applications. Detailed DC and high frequency 2-dimensional modeling of ultra-wide band gap semiconductor devices show that the predicted power density, gain, and efficiency of these devices have the potential to be better than cutting-edge GaN-based devices at mm-wave and THz frequencies. We will discuss the principal challenges for realization of these devices and outline the design and demonstration of advanced high Al-composition AlGaN based transistors, where researchers have used novel epitaxial designs to enable efficient injection and extraction of carriers. This has enabled the state-of-the-art current density and breakdown characteristics of AlGaN-channel devices to increase significantly in recent years.\",\"PeriodicalId\":6605,\"journal\":{\"name\":\"2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)\",\"volume\":\"38 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMWS-AMP.2018.8457144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-AMP.2018.8457144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultra-wide band gap materials for high frequency applications
Gallium Nitride electronics based on the AlGaN/GaN high electron mobility transistor structure is approaching intrinsic limits. Future mm-wave and THz technology requires highly efficient and linear amplifiers that can deliver high power density. This presentation will outline the potential and recent work of next-generation wide band gap transistors based on ultra-wide band gap semiconductors for high frequency applications. Detailed DC and high frequency 2-dimensional modeling of ultra-wide band gap semiconductor devices show that the predicted power density, gain, and efficiency of these devices have the potential to be better than cutting-edge GaN-based devices at mm-wave and THz frequencies. We will discuss the principal challenges for realization of these devices and outline the design and demonstration of advanced high Al-composition AlGaN based transistors, where researchers have used novel epitaxial designs to enable efficient injection and extraction of carriers. This has enabled the state-of-the-art current density and breakdown characteristics of AlGaN-channel devices to increase significantly in recent years.