{"title":"利用挤压生物打印工艺制备全尺寸支架的混合水凝胶","authors":"Cartwright Nelson, Slesha Tuladhar, Md. Ahasan Habib","doi":"10.1115/msec2022-85372","DOIUrl":null,"url":null,"abstract":"\n Three-dimensional (3D) bioprinting is a technology that has the power to positively change the medical and pharmaceutical fields in a new and more intuitive way. The goal of this rapidly growing field is to recreate functional tissues, but the process requires the ability to achieve large full-scale scaffolds that replicate human organs. There are many challenges when attempting to print large scaffolds ensuring proper internal and external geometric fidelity that is also suitable for the living cells that undergo the printing process. In order to fabricate a larger and more structurally sound scaffold, higher material viscosities are necessary. This increase in viscosity comes with an increase in printing pressure, which can create unbearable shear stress and eventually damage cells, diminishing viability and proliferation. A set of biomaterial compositions with high structural integrity and shape fidelity that did not require harmful amounts of pressure for extrusion was identified by analyzing rheological, mechanical, and microstructural properties. Many different large-scale scaffolds maintaining geometric fidelity were fabricated with heights up to 3.0 cm and 74 layers using these hybrid hydrogels. This advancement can ensure precise internal and external geometries of full-scale functional tissue replicating scaffolds using 3D bio-printing processes that utilize pressures and materials safe for live cell viability and proliferation.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing Hybrid Hydrogels for Full-Scale Scaffold Fabrication Using Extrusion-Based Bioprinting Process\",\"authors\":\"Cartwright Nelson, Slesha Tuladhar, Md. Ahasan Habib\",\"doi\":\"10.1115/msec2022-85372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Three-dimensional (3D) bioprinting is a technology that has the power to positively change the medical and pharmaceutical fields in a new and more intuitive way. The goal of this rapidly growing field is to recreate functional tissues, but the process requires the ability to achieve large full-scale scaffolds that replicate human organs. There are many challenges when attempting to print large scaffolds ensuring proper internal and external geometric fidelity that is also suitable for the living cells that undergo the printing process. In order to fabricate a larger and more structurally sound scaffold, higher material viscosities are necessary. This increase in viscosity comes with an increase in printing pressure, which can create unbearable shear stress and eventually damage cells, diminishing viability and proliferation. A set of biomaterial compositions with high structural integrity and shape fidelity that did not require harmful amounts of pressure for extrusion was identified by analyzing rheological, mechanical, and microstructural properties. Many different large-scale scaffolds maintaining geometric fidelity were fabricated with heights up to 3.0 cm and 74 layers using these hybrid hydrogels. This advancement can ensure precise internal and external geometries of full-scale functional tissue replicating scaffolds using 3D bio-printing processes that utilize pressures and materials safe for live cell viability and proliferation.\",\"PeriodicalId\":45459,\"journal\":{\"name\":\"Journal of Micro and Nano-Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro and Nano-Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2022-85372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Developing Hybrid Hydrogels for Full-Scale Scaffold Fabrication Using Extrusion-Based Bioprinting Process
Three-dimensional (3D) bioprinting is a technology that has the power to positively change the medical and pharmaceutical fields in a new and more intuitive way. The goal of this rapidly growing field is to recreate functional tissues, but the process requires the ability to achieve large full-scale scaffolds that replicate human organs. There are many challenges when attempting to print large scaffolds ensuring proper internal and external geometric fidelity that is also suitable for the living cells that undergo the printing process. In order to fabricate a larger and more structurally sound scaffold, higher material viscosities are necessary. This increase in viscosity comes with an increase in printing pressure, which can create unbearable shear stress and eventually damage cells, diminishing viability and proliferation. A set of biomaterial compositions with high structural integrity and shape fidelity that did not require harmful amounts of pressure for extrusion was identified by analyzing rheological, mechanical, and microstructural properties. Many different large-scale scaffolds maintaining geometric fidelity were fabricated with heights up to 3.0 cm and 74 layers using these hybrid hydrogels. This advancement can ensure precise internal and external geometries of full-scale functional tissue replicating scaffolds using 3D bio-printing processes that utilize pressures and materials safe for live cell viability and proliferation.
期刊介绍:
The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.