基于LSTM的深度学习的句子生成

Sunanda Das, Sajal Basak Partha, Kazi Nasim Imtiaz Hasan
{"title":"基于LSTM的深度学习的句子生成","authors":"Sunanda Das, Sajal Basak Partha, Kazi Nasim Imtiaz Hasan","doi":"10.1109/tensymp50017.2020.9230979","DOIUrl":null,"url":null,"abstract":"Sentence generation serves the process of predicting relevant words in a specific sequence. The purpose of this research is to come up with a method for generating sentences while maintaining proper grammatical structure. Here, we have implemented a sentence generation system based on Long Short-Term Memory (LSTM) architecture. Our system generally follows the basics of word embedding where words from the dataset get tokenized and turned into vector forms. These vectors are then processed and passed through a Long Short-Term Memory layer. Successive words get generated from the system after each iteration. This process winds up generating relevant words to form a sentence or a passage. The results of the system are pretty convincing compared to different existing methods.","PeriodicalId":6721,"journal":{"name":"2020 IEEE Region 10 Symposium (TENSYMP)","volume":"70 1","pages":"1070-1073"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sentence Generation using LSTM Based Deep Learning\",\"authors\":\"Sunanda Das, Sajal Basak Partha, Kazi Nasim Imtiaz Hasan\",\"doi\":\"10.1109/tensymp50017.2020.9230979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentence generation serves the process of predicting relevant words in a specific sequence. The purpose of this research is to come up with a method for generating sentences while maintaining proper grammatical structure. Here, we have implemented a sentence generation system based on Long Short-Term Memory (LSTM) architecture. Our system generally follows the basics of word embedding where words from the dataset get tokenized and turned into vector forms. These vectors are then processed and passed through a Long Short-Term Memory layer. Successive words get generated from the system after each iteration. This process winds up generating relevant words to form a sentence or a passage. The results of the system are pretty convincing compared to different existing methods.\",\"PeriodicalId\":6721,\"journal\":{\"name\":\"2020 IEEE Region 10 Symposium (TENSYMP)\",\"volume\":\"70 1\",\"pages\":\"1070-1073\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Region 10 Symposium (TENSYMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/tensymp50017.2020.9230979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/tensymp50017.2020.9230979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

句子生成服务于按照特定顺序预测相关单词的过程。本研究的目的是提出一种生成句子的方法,同时保持适当的语法结构。在这里,我们实现了一个基于长短期记忆(LSTM)架构的句子生成系统。我们的系统通常遵循词嵌入的基础,其中来自数据集的词被标记并转换为向量形式。然后对这些向量进行处理并通过长短期记忆层。每次迭代之后,系统会生成连续的单词。这个过程最终会生成相关的单词来组成一个句子或一篇文章。与现有的不同方法相比,该系统的结果非常令人信服。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentence Generation using LSTM Based Deep Learning
Sentence generation serves the process of predicting relevant words in a specific sequence. The purpose of this research is to come up with a method for generating sentences while maintaining proper grammatical structure. Here, we have implemented a sentence generation system based on Long Short-Term Memory (LSTM) architecture. Our system generally follows the basics of word embedding where words from the dataset get tokenized and turned into vector forms. These vectors are then processed and passed through a Long Short-Term Memory layer. Successive words get generated from the system after each iteration. This process winds up generating relevant words to form a sentence or a passage. The results of the system are pretty convincing compared to different existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信