数学形态学辅助脑MRI t2加权图像的增强和分割

S. Sarkar, D. Dey
{"title":"数学形态学辅助脑MRI t2加权图像的增强和分割","authors":"S. Sarkar, D. Dey","doi":"10.1109/ICICPI.2016.7859687","DOIUrl":null,"url":null,"abstract":"Segmentation of the brain MRI into its constituent White Matter (WM), Gray Matter (GM) and Cerebrospinal Fluid (CSF) is a vital task for the diagnosis of various neurological diseases. In this work, mathematical morphology has been employed for contrast enhancement of the brain T2-wighted MRI, followed by segmentation with the help of Fuzzy C-means (FCM) clustering algorithm. The proposed method has resulted in better results, both qualitatively and quantitatively in comparison to the conventional method where FCM is directly applied to the raw MR images.","PeriodicalId":6501,"journal":{"name":"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)","volume":"43 1","pages":"122-126"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mathematical morphology aided enhancement and segmentation of T2-weighted brain MRI images\",\"authors\":\"S. Sarkar, D. Dey\",\"doi\":\"10.1109/ICICPI.2016.7859687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation of the brain MRI into its constituent White Matter (WM), Gray Matter (GM) and Cerebrospinal Fluid (CSF) is a vital task for the diagnosis of various neurological diseases. In this work, mathematical morphology has been employed for contrast enhancement of the brain T2-wighted MRI, followed by segmentation with the help of Fuzzy C-means (FCM) clustering algorithm. The proposed method has resulted in better results, both qualitatively and quantitatively in comparison to the conventional method where FCM is directly applied to the raw MR images.\",\"PeriodicalId\":6501,\"journal\":{\"name\":\"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)\",\"volume\":\"43 1\",\"pages\":\"122-126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICPI.2016.7859687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICPI.2016.7859687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

脑MRI图像分割为白质(WM)、灰质(GM)和脑脊液(CSF)是诊断各种神经系统疾病的重要任务。在这项工作中,数学形态学被用于脑t2加权MRI的对比度增强,然后使用模糊c均值(FCM)聚类算法进行分割。与传统方法相比,该方法在定性和定量上都取得了更好的结果,其中FCM直接应用于原始MR图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical morphology aided enhancement and segmentation of T2-weighted brain MRI images
Segmentation of the brain MRI into its constituent White Matter (WM), Gray Matter (GM) and Cerebrospinal Fluid (CSF) is a vital task for the diagnosis of various neurological diseases. In this work, mathematical morphology has been employed for contrast enhancement of the brain T2-wighted MRI, followed by segmentation with the help of Fuzzy C-means (FCM) clustering algorithm. The proposed method has resulted in better results, both qualitatively and quantitatively in comparison to the conventional method where FCM is directly applied to the raw MR images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信