腹部CT多目标器官自动检测与分割

Oliver Mietzner, André Mastmeyer
{"title":"腹部CT多目标器官自动检测与分割","authors":"Oliver Mietzner, André Mastmeyer","doi":"10.1101/2020.03.17.20036053","DOIUrl":null,"url":null,"abstract":"The ability to generate 3D patient models in a fast and reliable way, is of great importance, e.g. for the simulation of liver punctures in virtual reality simulations. The aim is to automatically detect and segment abdominal structures in CT scans. In particular in the selected organ group, the pancreas poses a challenge. We use a combination of random regression forests and 2D U-Nets to detect bounding boxes and generate segmentation masks for five abdominal organs (liver, kidneys, spleen, pancreas). Training and testing is carried out on 50 CT scans from various public sources. The results show Dice coefficients of up to 0.71. The proposed method can theoretically be used for any anatomical structure, as long as sufficient training data is available.","PeriodicalId":77027,"journal":{"name":"Bailliere's clinical endocrinology and metabolism","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic multi-object organ detection and segmentation in abdominal CT data\",\"authors\":\"Oliver Mietzner, André Mastmeyer\",\"doi\":\"10.1101/2020.03.17.20036053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to generate 3D patient models in a fast and reliable way, is of great importance, e.g. for the simulation of liver punctures in virtual reality simulations. The aim is to automatically detect and segment abdominal structures in CT scans. In particular in the selected organ group, the pancreas poses a challenge. We use a combination of random regression forests and 2D U-Nets to detect bounding boxes and generate segmentation masks for five abdominal organs (liver, kidneys, spleen, pancreas). Training and testing is carried out on 50 CT scans from various public sources. The results show Dice coefficients of up to 0.71. The proposed method can theoretically be used for any anatomical structure, as long as sufficient training data is available.\",\"PeriodicalId\":77027,\"journal\":{\"name\":\"Bailliere's clinical endocrinology and metabolism\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bailliere's clinical endocrinology and metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2020.03.17.20036053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bailliere's clinical endocrinology and metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.03.17.20036053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

以快速可靠的方式生成3D患者模型的能力非常重要,例如在虚拟现实模拟中模拟肝脏穿刺。目的是在CT扫描中自动检测和分割腹部结构。特别是在选定的器官组中,胰腺是一个挑战。我们结合使用随机回归森林和二维U-Nets来检测边界框,并生成五个腹部器官(肝脏,肾脏,脾脏,胰腺)的分割蒙版。对来自不同公共来源的50张CT扫描图进行了培训和测试。结果表明,Dice系数可达0.71。理论上,只要有足够的训练数据,所提出的方法可以用于任何解剖结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic multi-object organ detection and segmentation in abdominal CT data
The ability to generate 3D patient models in a fast and reliable way, is of great importance, e.g. for the simulation of liver punctures in virtual reality simulations. The aim is to automatically detect and segment abdominal structures in CT scans. In particular in the selected organ group, the pancreas poses a challenge. We use a combination of random regression forests and 2D U-Nets to detect bounding boxes and generate segmentation masks for five abdominal organs (liver, kidneys, spleen, pancreas). Training and testing is carried out on 50 CT scans from various public sources. The results show Dice coefficients of up to 0.71. The proposed method can theoretically be used for any anatomical structure, as long as sufficient training data is available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信