具有各向异性阻抗表面的回旋管腔的本征模

V. Shcherbinin
{"title":"具有各向异性阻抗表面的回旋管腔的本征模","authors":"V. Shcherbinin","doi":"10.1109/MSMW.2016.7538035","DOIUrl":null,"url":null,"abstract":"Coupled first-order differential equations are obtained for the field amplitudes of a single wave in cylindrical weakly irregular waveguide with anisotropic impedance surface. The equations are valid for both types of hybrid waves. For closed uniform cavity with ideal side walls, they yield analytical solution to eigenvalue problem. For open gyrotron cavity, they reduce to known form as impedance approaches zero. Gyrotron cavity with anisotropic wall impedance of special form is considered as numerical example.","PeriodicalId":6504,"journal":{"name":"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)","volume":"4 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Eigenmodes of a gyrotron cavity with anisotropic impedance surface\",\"authors\":\"V. Shcherbinin\",\"doi\":\"10.1109/MSMW.2016.7538035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coupled first-order differential equations are obtained for the field amplitudes of a single wave in cylindrical weakly irregular waveguide with anisotropic impedance surface. The equations are valid for both types of hybrid waves. For closed uniform cavity with ideal side walls, they yield analytical solution to eigenvalue problem. For open gyrotron cavity, they reduce to known form as impedance approaches zero. Gyrotron cavity with anisotropic wall impedance of special form is considered as numerical example.\",\"PeriodicalId\":6504,\"journal\":{\"name\":\"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)\",\"volume\":\"4 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSMW.2016.7538035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMW.2016.7538035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

得到了具有各向异性阻抗表面的弱不规则圆柱波导中单波场振幅的耦合一阶微分方程。该方程对两种混合波均有效。对于具有理想侧壁的密闭均匀腔,给出了特征值问题的解析解。对于开放回旋管腔,当阻抗接近零时,它们减小到已知形式。以具有特殊形式壁阻抗各向异性的回旋管腔为算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigenmodes of a gyrotron cavity with anisotropic impedance surface
Coupled first-order differential equations are obtained for the field amplitudes of a single wave in cylindrical weakly irregular waveguide with anisotropic impedance surface. The equations are valid for both types of hybrid waves. For closed uniform cavity with ideal side walls, they yield analytical solution to eigenvalue problem. For open gyrotron cavity, they reduce to known form as impedance approaches zero. Gyrotron cavity with anisotropic wall impedance of special form is considered as numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信