{"title":"函数在无穷远处的无穷极限及其现象学","authors":"Mónica Arnal-Palacián","doi":"10.24917/20809751.14.3","DOIUrl":null,"url":null,"abstract":"In this paper we aim to characterise and define the phenomena of the infinite limit of a function at infinity. Based on the intuitive and formal approaches, we obtain as results five phenomena organised by a definition of this limit: intuitive unlimited growth of a function, for plus and minus infinity, and intuitive unlimited decrease of a function, for plus and minus infinity (intuitive approach), and the round-trip phenomenon of infinite limit functions (formal approach). All this is intended to help overcome the difficulties that pre-university students have with the concept of limit, contributing from phenomenology, Advanced and Elementary Mathematical Thinking, and APOS theory.\nKeywords: limit, infinity, functions, phenomenology, Advanced Mathematical Thinking, APOS","PeriodicalId":33912,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis Studia Naturae","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinite limit of a function at infinity and its phenomenology\",\"authors\":\"Mónica Arnal-Palacián\",\"doi\":\"10.24917/20809751.14.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we aim to characterise and define the phenomena of the infinite limit of a function at infinity. Based on the intuitive and formal approaches, we obtain as results five phenomena organised by a definition of this limit: intuitive unlimited growth of a function, for plus and minus infinity, and intuitive unlimited decrease of a function, for plus and minus infinity (intuitive approach), and the round-trip phenomenon of infinite limit functions (formal approach). All this is intended to help overcome the difficulties that pre-university students have with the concept of limit, contributing from phenomenology, Advanced and Elementary Mathematical Thinking, and APOS theory.\\nKeywords: limit, infinity, functions, phenomenology, Advanced Mathematical Thinking, APOS\",\"PeriodicalId\":33912,\"journal\":{\"name\":\"Annales Universitatis Paedagogicae Cracoviensis Studia Naturae\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Paedagogicae Cracoviensis Studia Naturae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24917/20809751.14.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis Studia Naturae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24917/20809751.14.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Infinite limit of a function at infinity and its phenomenology
In this paper we aim to characterise and define the phenomena of the infinite limit of a function at infinity. Based on the intuitive and formal approaches, we obtain as results five phenomena organised by a definition of this limit: intuitive unlimited growth of a function, for plus and minus infinity, and intuitive unlimited decrease of a function, for plus and minus infinity (intuitive approach), and the round-trip phenomenon of infinite limit functions (formal approach). All this is intended to help overcome the difficulties that pre-university students have with the concept of limit, contributing from phenomenology, Advanced and Elementary Mathematical Thinking, and APOS theory.
Keywords: limit, infinity, functions, phenomenology, Advanced Mathematical Thinking, APOS