函数在无穷远处的无穷极限及其现象学

Mónica Arnal-Palacián
{"title":"函数在无穷远处的无穷极限及其现象学","authors":"Mónica Arnal-Palacián","doi":"10.24917/20809751.14.3","DOIUrl":null,"url":null,"abstract":"In this paper we aim to characterise and define the phenomena of the infinite limit of a function at infinity. Based on the intuitive and formal approaches, we obtain as results five phenomena organised by a definition of this limit: intuitive unlimited growth of a function, for plus and minus infinity, and intuitive unlimited decrease of a function, for plus and minus infinity (intuitive approach), and the round-trip phenomenon of infinite limit functions (formal approach). All this is intended to help overcome the difficulties that pre-university students have with the concept of limit, contributing from phenomenology, Advanced and Elementary Mathematical Thinking, and APOS theory.\nKeywords: limit, infinity, functions, phenomenology, Advanced Mathematical Thinking, APOS","PeriodicalId":33912,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis Studia Naturae","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinite limit of a function at infinity and its phenomenology\",\"authors\":\"Mónica Arnal-Palacián\",\"doi\":\"10.24917/20809751.14.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we aim to characterise and define the phenomena of the infinite limit of a function at infinity. Based on the intuitive and formal approaches, we obtain as results five phenomena organised by a definition of this limit: intuitive unlimited growth of a function, for plus and minus infinity, and intuitive unlimited decrease of a function, for plus and minus infinity (intuitive approach), and the round-trip phenomenon of infinite limit functions (formal approach). All this is intended to help overcome the difficulties that pre-university students have with the concept of limit, contributing from phenomenology, Advanced and Elementary Mathematical Thinking, and APOS theory.\\nKeywords: limit, infinity, functions, phenomenology, Advanced Mathematical Thinking, APOS\",\"PeriodicalId\":33912,\"journal\":{\"name\":\"Annales Universitatis Paedagogicae Cracoviensis Studia Naturae\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Paedagogicae Cracoviensis Studia Naturae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24917/20809751.14.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis Studia Naturae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24917/20809751.14.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是描述和定义函数在无穷远处的无穷极限现象。根据直观方法和形式方法,我们得到了由该极限定义组织的五种现象:一个函数在正、负无穷情况下的直观无限增长,一个函数在正、负无穷情况下的直观无限减小(直观方法),以及无穷极限函数的往返现象(形式方法)。本文从现象学、高等与初等数学思维、APOS理论等方面对极限概念进行了探讨,旨在帮助初等学生克服极限概念的困难。关键词:极限,无穷,函数,现象学,高等数学思维,APOS
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinite limit of a function at infinity and its phenomenology
In this paper we aim to characterise and define the phenomena of the infinite limit of a function at infinity. Based on the intuitive and formal approaches, we obtain as results five phenomena organised by a definition of this limit: intuitive unlimited growth of a function, for plus and minus infinity, and intuitive unlimited decrease of a function, for plus and minus infinity (intuitive approach), and the round-trip phenomenon of infinite limit functions (formal approach). All this is intended to help overcome the difficulties that pre-university students have with the concept of limit, contributing from phenomenology, Advanced and Elementary Mathematical Thinking, and APOS theory. Keywords: limit, infinity, functions, phenomenology, Advanced Mathematical Thinking, APOS
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
3
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信