A. Benali, F. Traversa, G. Albareda, X. Oriols, M. Aghoutane
{"title":"面向无长度缩放的新兴器件的频率性能改进","authors":"A. Benali, F. Traversa, G. Albareda, X. Oriols, M. Aghoutane","doi":"10.1109/CDE.2013.6481336","DOIUrl":null,"url":null,"abstract":"The improvement of the intrinsic high-frequency performance of emerging transistors is commonly based on reducing electron transit time and it is pursued by either reducing the channel length or employing novel high-electron-mobility materials. For gate-all-around transistors with lateral dimensions much shorter than their length, a careful analysis of the total time-dependent current shows that a time shorter than the electron transit time along the channel controls their high-frequency behavior. Both, the standard displacement current definition and the Ramo-Shockley-Pellegrini theorem are used to demonstrate this effect. Therefore, the high-frequency performance of such transistors, with a proper geometry design, can go beyond the intrinsic limits imposed by the electron transit time.","PeriodicalId":6614,"journal":{"name":"2013 Spanish Conference on Electron Devices","volume":"35 4 1","pages":"37-40"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards frequency performance improvement of emerging devices without length scaling\",\"authors\":\"A. Benali, F. Traversa, G. Albareda, X. Oriols, M. Aghoutane\",\"doi\":\"10.1109/CDE.2013.6481336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The improvement of the intrinsic high-frequency performance of emerging transistors is commonly based on reducing electron transit time and it is pursued by either reducing the channel length or employing novel high-electron-mobility materials. For gate-all-around transistors with lateral dimensions much shorter than their length, a careful analysis of the total time-dependent current shows that a time shorter than the electron transit time along the channel controls their high-frequency behavior. Both, the standard displacement current definition and the Ramo-Shockley-Pellegrini theorem are used to demonstrate this effect. Therefore, the high-frequency performance of such transistors, with a proper geometry design, can go beyond the intrinsic limits imposed by the electron transit time.\",\"PeriodicalId\":6614,\"journal\":{\"name\":\"2013 Spanish Conference on Electron Devices\",\"volume\":\"35 4 1\",\"pages\":\"37-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Spanish Conference on Electron Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDE.2013.6481336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Spanish Conference on Electron Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDE.2013.6481336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards frequency performance improvement of emerging devices without length scaling
The improvement of the intrinsic high-frequency performance of emerging transistors is commonly based on reducing electron transit time and it is pursued by either reducing the channel length or employing novel high-electron-mobility materials. For gate-all-around transistors with lateral dimensions much shorter than their length, a careful analysis of the total time-dependent current shows that a time shorter than the electron transit time along the channel controls their high-frequency behavior. Both, the standard displacement current definition and the Ramo-Shockley-Pellegrini theorem are used to demonstrate this effect. Therefore, the high-frequency performance of such transistors, with a proper geometry design, can go beyond the intrinsic limits imposed by the electron transit time.