Alireza Hosseini Mehrab, Seyedmahdi Amirfakhrian, M. Esfahani
{"title":"聚丙烯纤维增强工程胶凝复合材料弯曲断裂性能的尺寸效应","authors":"Alireza Hosseini Mehrab, Seyedmahdi Amirfakhrian, M. Esfahani","doi":"10.3311/ppci.21155","DOIUrl":null,"url":null,"abstract":"The size effect on flexural properties and fracture behavior of polypropylene fiber-reinforced engineered cementitious composite (PPFECC) containing local waste materials was investigated. Geometrically similar notched beams with dimensions of 190 × 70 × 70 mm (small), 380 × 70 × 140 mm (medium), and 760 × 70 × 280 mm (large) were tested using three-point bending to study the size effect on flexural properties, toughness, and fracture behavior in PPFECC and the influence of tensile ductility of PPFECC on the size effect parameter. Two PPFECC mixtures containing 1% (PPFECC1) and 2% (PPFECC2) volume fraction of polypropylene fibers were prepared. The results indicated clear size effect on ductility, flexural strength, normalized deflection, normalized toughness, and fracture energy for both PPFECCs. The flexural properties and fracture behavior in PPFECC1 were more sensitive to the size effect parameter due to its lower tensile ductility compared to PPFECC2. Moreover, according to Bažant’s size effect curve, the behavior of notched beams in PPFECC2 with higher tensile ductility was closer to the strength criterion compared to PPFECC1.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size Effect on Flexural and Fracture Properties of Polypropylene Fiber-reinforced Engineered Cementitious Composite\",\"authors\":\"Alireza Hosseini Mehrab, Seyedmahdi Amirfakhrian, M. Esfahani\",\"doi\":\"10.3311/ppci.21155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The size effect on flexural properties and fracture behavior of polypropylene fiber-reinforced engineered cementitious composite (PPFECC) containing local waste materials was investigated. Geometrically similar notched beams with dimensions of 190 × 70 × 70 mm (small), 380 × 70 × 140 mm (medium), and 760 × 70 × 280 mm (large) were tested using three-point bending to study the size effect on flexural properties, toughness, and fracture behavior in PPFECC and the influence of tensile ductility of PPFECC on the size effect parameter. Two PPFECC mixtures containing 1% (PPFECC1) and 2% (PPFECC2) volume fraction of polypropylene fibers were prepared. The results indicated clear size effect on ductility, flexural strength, normalized deflection, normalized toughness, and fracture energy for both PPFECCs. The flexural properties and fracture behavior in PPFECC1 were more sensitive to the size effect parameter due to its lower tensile ductility compared to PPFECC2. Moreover, according to Bažant’s size effect curve, the behavior of notched beams in PPFECC2 with higher tensile ductility was closer to the strength criterion compared to PPFECC1.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppci.21155\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.21155","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Size Effect on Flexural and Fracture Properties of Polypropylene Fiber-reinforced Engineered Cementitious Composite
The size effect on flexural properties and fracture behavior of polypropylene fiber-reinforced engineered cementitious composite (PPFECC) containing local waste materials was investigated. Geometrically similar notched beams with dimensions of 190 × 70 × 70 mm (small), 380 × 70 × 140 mm (medium), and 760 × 70 × 280 mm (large) were tested using three-point bending to study the size effect on flexural properties, toughness, and fracture behavior in PPFECC and the influence of tensile ductility of PPFECC on the size effect parameter. Two PPFECC mixtures containing 1% (PPFECC1) and 2% (PPFECC2) volume fraction of polypropylene fibers were prepared. The results indicated clear size effect on ductility, flexural strength, normalized deflection, normalized toughness, and fracture energy for both PPFECCs. The flexural properties and fracture behavior in PPFECC1 were more sensitive to the size effect parameter due to its lower tensile ductility compared to PPFECC2. Moreover, according to Bažant’s size effect curve, the behavior of notched beams in PPFECC2 with higher tensile ductility was closer to the strength criterion compared to PPFECC1.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.