{"title":"基于集成学习的地面车辆控制脑机接口系统","authors":"Jiayu Zhuang, Keke Geng, Guo-dong Yin","doi":"10.1109/TSMC.2019.2955478","DOIUrl":null,"url":null,"abstract":"This article establishes a novel electroencephalograph (EEG)-based brain–computer interface (BCI) system for ground vehicle control with potential application of mobility assistance to the disabled. To enable an intuitive motor imagery (MI) paradigm of “left,” “right,” “push,” and “pull,” a driving simulator based EEG data recording and automatic labeling platform is built for dataset making. In the preprocessing stage, a wavelet and canonical correlation analysis (CCA) combined method is used for artifact removal and improving signal-to-noise ratio. An ensemble learning based training and testing framework is proposed for MI EEG data classification. The average classification accuracy of proposed framework is about 91.75%. This approach essentially takes advantage of the common spatial pattern (CSP) with ability of extracting the feature of event-related potentials and the convolutional neural networks (CNNs) with powerful capacity of feature learning and classification. To convert the classification results of EEG data segments into motion control signals of ground vehicle, shared control strategy is used to realize the control command of “left-steering,” “right-steering,” “acceleration,” and “stop” considering collision avoidance with obstacles detected by a single-line LIDAR. The online experimental results on a model vehicle platform validate the significant performance of the established BCI system and reveal the application potential of BCI on the vehicle control and automation.","PeriodicalId":55007,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","volume":"68 1","pages":"5392-5404"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Ensemble Learning Based Brain–Computer Interface System for Ground Vehicle Control\",\"authors\":\"Jiayu Zhuang, Keke Geng, Guo-dong Yin\",\"doi\":\"10.1109/TSMC.2019.2955478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article establishes a novel electroencephalograph (EEG)-based brain–computer interface (BCI) system for ground vehicle control with potential application of mobility assistance to the disabled. To enable an intuitive motor imagery (MI) paradigm of “left,” “right,” “push,” and “pull,” a driving simulator based EEG data recording and automatic labeling platform is built for dataset making. In the preprocessing stage, a wavelet and canonical correlation analysis (CCA) combined method is used for artifact removal and improving signal-to-noise ratio. An ensemble learning based training and testing framework is proposed for MI EEG data classification. The average classification accuracy of proposed framework is about 91.75%. This approach essentially takes advantage of the common spatial pattern (CSP) with ability of extracting the feature of event-related potentials and the convolutional neural networks (CNNs) with powerful capacity of feature learning and classification. To convert the classification results of EEG data segments into motion control signals of ground vehicle, shared control strategy is used to realize the control command of “left-steering,” “right-steering,” “acceleration,” and “stop” considering collision avoidance with obstacles detected by a single-line LIDAR. The online experimental results on a model vehicle platform validate the significant performance of the established BCI system and reveal the application potential of BCI on the vehicle control and automation.\",\"PeriodicalId\":55007,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans\",\"volume\":\"68 1\",\"pages\":\"5392-5404\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMC.2019.2955478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMC.2019.2955478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ensemble Learning Based Brain–Computer Interface System for Ground Vehicle Control
This article establishes a novel electroencephalograph (EEG)-based brain–computer interface (BCI) system for ground vehicle control with potential application of mobility assistance to the disabled. To enable an intuitive motor imagery (MI) paradigm of “left,” “right,” “push,” and “pull,” a driving simulator based EEG data recording and automatic labeling platform is built for dataset making. In the preprocessing stage, a wavelet and canonical correlation analysis (CCA) combined method is used for artifact removal and improving signal-to-noise ratio. An ensemble learning based training and testing framework is proposed for MI EEG data classification. The average classification accuracy of proposed framework is about 91.75%. This approach essentially takes advantage of the common spatial pattern (CSP) with ability of extracting the feature of event-related potentials and the convolutional neural networks (CNNs) with powerful capacity of feature learning and classification. To convert the classification results of EEG data segments into motion control signals of ground vehicle, shared control strategy is used to realize the control command of “left-steering,” “right-steering,” “acceleration,” and “stop” considering collision avoidance with obstacles detected by a single-line LIDAR. The online experimental results on a model vehicle platform validate the significant performance of the established BCI system and reveal the application potential of BCI on the vehicle control and automation.
期刊介绍:
The scope of the IEEE Transactions on Systems, Man, and Cybernetics: Systems includes the fields of systems engineering. It includes issue formulation, analysis and modeling, decision making, and issue interpretation for any of the systems engineering lifecycle phases associated with the definition, development, and deployment of large systems. In addition, it includes systems management, systems engineering processes, and a variety of systems engineering methods such as optimization, modeling and simulation.