伊斯坦布尔圣索菲亚大教堂墙体成分对墙面水分相关退化的影响

IF 1.8 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Etsuko Mizutani, D. Ogura, T. Ishizaki, M. Abuku, Juni Sasaki
{"title":"伊斯坦布尔圣索菲亚大教堂墙体成分对墙面水分相关退化的影响","authors":"Etsuko Mizutani, D. Ogura, T. Ishizaki, M. Abuku, Juni Sasaki","doi":"10.1177/1744259121996017","DOIUrl":null,"url":null,"abstract":"Over the past 10 years, our research team has holistically studied the environmental aspects of the conservation and restoration of the Hagia Sophia, which is suffering from severe degradation of its wall paintings, including the exfoliation of wall paintings and inner finishing materials, mainly due to salt crystallisation. In the present study, we investigated the influence of environmental factors and wall composition on the hygrothermal behaviour in the structure, such as moisture accumulation and evaporation within the walls, which significantly affect salt crystallisation. The differences in distribution of high moisture content at second cornice are depending on the azimuth, and the high correlation between high moisture content and deterioration severity is significant. A two-dimensional numerical model of the simultaneous transfer of heat and moisture considering the measured material physical properties and wall composition of the exedra wall is developed to quantitatively investigate the influence of environmental factors on moisture accumulation. Numerical results show that infiltrated rainwater tends to accumulate because the original builders used connection mortar, which has a much larger moisture diffusivity than that of modern mortar, and the accumulated water at the bottom of the wall is difficult to drain owing to the shape of the wall. In the northwest exedra, the influence of wind-driven rain on water accumulation is similar to that of runoff rainwater from the upper roofs, which probably causes deterioration over a wide area. In addition, the effect of the deterioration suppression measure by the re-covering of the outer surfaces of the west wall in 2013 is verified, and an appropriate suppression measure against water permeation is examined using a numerical model.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of wall composition on moisture related degradation of the wall surfaces in Hagia Sophia, Istanbul\",\"authors\":\"Etsuko Mizutani, D. Ogura, T. Ishizaki, M. Abuku, Juni Sasaki\",\"doi\":\"10.1177/1744259121996017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past 10 years, our research team has holistically studied the environmental aspects of the conservation and restoration of the Hagia Sophia, which is suffering from severe degradation of its wall paintings, including the exfoliation of wall paintings and inner finishing materials, mainly due to salt crystallisation. In the present study, we investigated the influence of environmental factors and wall composition on the hygrothermal behaviour in the structure, such as moisture accumulation and evaporation within the walls, which significantly affect salt crystallisation. The differences in distribution of high moisture content at second cornice are depending on the azimuth, and the high correlation between high moisture content and deterioration severity is significant. A two-dimensional numerical model of the simultaneous transfer of heat and moisture considering the measured material physical properties and wall composition of the exedra wall is developed to quantitatively investigate the influence of environmental factors on moisture accumulation. Numerical results show that infiltrated rainwater tends to accumulate because the original builders used connection mortar, which has a much larger moisture diffusivity than that of modern mortar, and the accumulated water at the bottom of the wall is difficult to drain owing to the shape of the wall. In the northwest exedra, the influence of wind-driven rain on water accumulation is similar to that of runoff rainwater from the upper roofs, which probably causes deterioration over a wide area. In addition, the effect of the deterioration suppression measure by the re-covering of the outer surfaces of the west wall in 2013 is verified, and an appropriate suppression measure against water permeation is examined using a numerical model.\",\"PeriodicalId\":50249,\"journal\":{\"name\":\"Journal of Building Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Building Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1744259121996017\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Physics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1744259121996017","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

在过去的10年里,我们的研究团队对圣索菲亚大教堂的保护和修复进行了全面的环境方面的研究,圣索菲亚大教堂的壁画正遭受严重的退化,包括壁画和内部装饰材料的剥落,主要是由于盐结晶。在本研究中,我们研究了环境因素和壁面组成对结构中湿热行为的影响,如壁面内的水分积累和蒸发,这对盐结晶有显著影响。第二檐口高含水率分布的差异取决于方位,高含水率与劣化程度高度相关。为了定量研究环境因素对水分积累的影响,建立了考虑被测材料物理性质和外壁组成的热湿同步传递二维数值模型。数值计算结果表明,由于原施工人员使用的连接砂浆具有比现代砂浆大得多的水分扩散系数,并且由于墙体形状的原因,墙体底部积聚的水分难以排出,使得入渗雨水容易积聚。在西北地区,风力降雨对雨水积累的影响与上层屋顶径流雨水的影响相似,可能会导致大面积的恶化。此外,验证了2013年西墙外表面复盖抑制劣化措施的效果,并通过数值模型探讨了适当的抑制渗水措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of wall composition on moisture related degradation of the wall surfaces in Hagia Sophia, Istanbul
Over the past 10 years, our research team has holistically studied the environmental aspects of the conservation and restoration of the Hagia Sophia, which is suffering from severe degradation of its wall paintings, including the exfoliation of wall paintings and inner finishing materials, mainly due to salt crystallisation. In the present study, we investigated the influence of environmental factors and wall composition on the hygrothermal behaviour in the structure, such as moisture accumulation and evaporation within the walls, which significantly affect salt crystallisation. The differences in distribution of high moisture content at second cornice are depending on the azimuth, and the high correlation between high moisture content and deterioration severity is significant. A two-dimensional numerical model of the simultaneous transfer of heat and moisture considering the measured material physical properties and wall composition of the exedra wall is developed to quantitatively investigate the influence of environmental factors on moisture accumulation. Numerical results show that infiltrated rainwater tends to accumulate because the original builders used connection mortar, which has a much larger moisture diffusivity than that of modern mortar, and the accumulated water at the bottom of the wall is difficult to drain owing to the shape of the wall. In the northwest exedra, the influence of wind-driven rain on water accumulation is similar to that of runoff rainwater from the upper roofs, which probably causes deterioration over a wide area. In addition, the effect of the deterioration suppression measure by the re-covering of the outer surfaces of the west wall in 2013 is verified, and an appropriate suppression measure against water permeation is examined using a numerical model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Building Physics
Journal of Building Physics 工程技术-结构与建筑技术
CiteScore
5.10
自引率
15.00%
发文量
10
审稿时长
5.3 months
期刊介绍: Journal of Building Physics (J. Bldg. Phys) is an international, peer-reviewed journal that publishes a high quality research and state of the art “integrated” papers to promote scientifically thorough advancement of all the areas of non-structural performance of a building and particularly in heat, air, moisture transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信