{"title":"双素数密度的解析近似","authors":"Dionisel Regalado, Rodel B. Azura","doi":"10.32871/RMRJ1806.02.05","DOIUrl":null,"url":null,"abstract":"The highly irregular and rough fluctuations of the twin primes below or equal to a positive integer x are considered in this study. The occurrence of a twin prime on an interval [0,x] is assumed to be random. In particular, we considered the waiting time between arrivals of twin primes as approximated by a geometric distribution which possesses the discrete memory-less property. For large n, the geometric distribution is well-approximated by the exponential distribution. The number of twin primes less or equal to x will then follow the Poisson distribution with the same rate parameter as the exponential distribution. The results are compared with the Hardy-Littlewood conjecture on the frequency of twin primes. We successfully demonstrated that for large n, the proposed model is superior to the H-L conjecture in predicting the frequency of twin primes.","PeriodicalId":34442,"journal":{"name":"Recoletos Multidisciplinary Research Journal","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Analytic Approximation to the Density of Twin Primes\",\"authors\":\"Dionisel Regalado, Rodel B. Azura\",\"doi\":\"10.32871/RMRJ1806.02.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The highly irregular and rough fluctuations of the twin primes below or equal to a positive integer x are considered in this study. The occurrence of a twin prime on an interval [0,x] is assumed to be random. In particular, we considered the waiting time between arrivals of twin primes as approximated by a geometric distribution which possesses the discrete memory-less property. For large n, the geometric distribution is well-approximated by the exponential distribution. The number of twin primes less or equal to x will then follow the Poisson distribution with the same rate parameter as the exponential distribution. The results are compared with the Hardy-Littlewood conjecture on the frequency of twin primes. We successfully demonstrated that for large n, the proposed model is superior to the H-L conjecture in predicting the frequency of twin primes.\",\"PeriodicalId\":34442,\"journal\":{\"name\":\"Recoletos Multidisciplinary Research Journal\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recoletos Multidisciplinary Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32871/RMRJ1806.02.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recoletos Multidisciplinary Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32871/RMRJ1806.02.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
An Analytic Approximation to the Density of Twin Primes
The highly irregular and rough fluctuations of the twin primes below or equal to a positive integer x are considered in this study. The occurrence of a twin prime on an interval [0,x] is assumed to be random. In particular, we considered the waiting time between arrivals of twin primes as approximated by a geometric distribution which possesses the discrete memory-less property. For large n, the geometric distribution is well-approximated by the exponential distribution. The number of twin primes less or equal to x will then follow the Poisson distribution with the same rate parameter as the exponential distribution. The results are compared with the Hardy-Littlewood conjecture on the frequency of twin primes. We successfully demonstrated that for large n, the proposed model is superior to the H-L conjecture in predicting the frequency of twin primes.