{"title":"头颈部MRA 3.0T","authors":"Matt A. Bernstein, J. Huston","doi":"10.1002/0471142719.mia0708s15","DOIUrl":null,"url":null,"abstract":"3.0T MRI scanners are becoming more widely used in clinical practice, particularly for neurological applications. The increased signal‐to‐noise ratio (SNR) provided by 3.0T compared to 1.5T is particularly useful for applications like magnetic resonance angiography (MRA). A protocol to image the intracranial circulation with 3‐D time of flight (3DTOF), and a protocol to image the carotid, vertebral, and basilar arteries with contrast‐enhanced MRA are presented. The increased SNR at 3.0T is used to increase the spatial resolution. For the 3DTOF exam, the acquisition time is also reduced with the use of parallel imaging.","PeriodicalId":100347,"journal":{"name":"Current Protocols in Magnetic Resonance Imaging","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Head and Neck MRA at 3.0T\",\"authors\":\"Matt A. Bernstein, J. Huston\",\"doi\":\"10.1002/0471142719.mia0708s15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3.0T MRI scanners are becoming more widely used in clinical practice, particularly for neurological applications. The increased signal‐to‐noise ratio (SNR) provided by 3.0T compared to 1.5T is particularly useful for applications like magnetic resonance angiography (MRA). A protocol to image the intracranial circulation with 3‐D time of flight (3DTOF), and a protocol to image the carotid, vertebral, and basilar arteries with contrast‐enhanced MRA are presented. The increased SNR at 3.0T is used to increase the spatial resolution. For the 3DTOF exam, the acquisition time is also reduced with the use of parallel imaging.\",\"PeriodicalId\":100347,\"journal\":{\"name\":\"Current Protocols in Magnetic Resonance Imaging\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Magnetic Resonance Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/0471142719.mia0708s15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Magnetic Resonance Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/0471142719.mia0708s15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3.0T MRI scanners are becoming more widely used in clinical practice, particularly for neurological applications. The increased signal‐to‐noise ratio (SNR) provided by 3.0T compared to 1.5T is particularly useful for applications like magnetic resonance angiography (MRA). A protocol to image the intracranial circulation with 3‐D time of flight (3DTOF), and a protocol to image the carotid, vertebral, and basilar arteries with contrast‐enhanced MRA are presented. The increased SNR at 3.0T is used to increase the spatial resolution. For the 3DTOF exam, the acquisition time is also reduced with the use of parallel imaging.