{"title":"几何尺寸对扶手椅结构单层石墨烯固有频率的影响","authors":"Harshad Patel","doi":"10.30564/jmer.v4i2.3831","DOIUrl":null,"url":null,"abstract":"Graphene has remarkable strength, such as yield strength and elasticconstant. The dynamic behaviour of graphene sheet is affected bygeometrical variation in atomic arrangement. This paper introducedgraphene with armchair atomic structure for estimating fundamental naturalfrequencies. The presented analysis can be useful for the possible highfrequency nanomechanical resonator systems. The analytical formulation,based on classical plate theory and continuum solid modelling based finiteelement method have been performed for estimation of fundamental naturalfrequencies of single layer graphene sheet (SGLS) with different boundaryconditions. The free edge and clamped edge boundary conditions have beenconsidered. For simplifying analytical formulations, Blevins approach fordynamic solution has been adopted and for validating analytical results.The finite element analysis of SLGS has been performed using ANSYSsoftware. The effect of variation in geometrical parameters in terms ofwidth and length of SLGS has been analysed for realization of ultra-highfrequency based nanomechanical resonator systems","PeriodicalId":16153,"journal":{"name":"Journal of Mechanical Engineering Research and Developments","volume":"12 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometrical Dimensional Effect on Natural Frequency of Single Layer Graphene in Armchair Configuration\",\"authors\":\"Harshad Patel\",\"doi\":\"10.30564/jmer.v4i2.3831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene has remarkable strength, such as yield strength and elasticconstant. The dynamic behaviour of graphene sheet is affected bygeometrical variation in atomic arrangement. This paper introducedgraphene with armchair atomic structure for estimating fundamental naturalfrequencies. The presented analysis can be useful for the possible highfrequency nanomechanical resonator systems. The analytical formulation,based on classical plate theory and continuum solid modelling based finiteelement method have been performed for estimation of fundamental naturalfrequencies of single layer graphene sheet (SGLS) with different boundaryconditions. The free edge and clamped edge boundary conditions have beenconsidered. For simplifying analytical formulations, Blevins approach fordynamic solution has been adopted and for validating analytical results.The finite element analysis of SLGS has been performed using ANSYSsoftware. The effect of variation in geometrical parameters in terms ofwidth and length of SLGS has been analysed for realization of ultra-highfrequency based nanomechanical resonator systems\",\"PeriodicalId\":16153,\"journal\":{\"name\":\"Journal of Mechanical Engineering Research and Developments\",\"volume\":\"12 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering Research and Developments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30564/jmer.v4i2.3831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering Research and Developments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/jmer.v4i2.3831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Geometrical Dimensional Effect on Natural Frequency of Single Layer Graphene in Armchair Configuration
Graphene has remarkable strength, such as yield strength and elasticconstant. The dynamic behaviour of graphene sheet is affected bygeometrical variation in atomic arrangement. This paper introducedgraphene with armchair atomic structure for estimating fundamental naturalfrequencies. The presented analysis can be useful for the possible highfrequency nanomechanical resonator systems. The analytical formulation,based on classical plate theory and continuum solid modelling based finiteelement method have been performed for estimation of fundamental naturalfrequencies of single layer graphene sheet (SGLS) with different boundaryconditions. The free edge and clamped edge boundary conditions have beenconsidered. For simplifying analytical formulations, Blevins approach fordynamic solution has been adopted and for validating analytical results.The finite element analysis of SLGS has been performed using ANSYSsoftware. The effect of variation in geometrical parameters in terms ofwidth and length of SLGS has been analysed for realization of ultra-highfrequency based nanomechanical resonator systems
期刊介绍:
The scopes of the journal include, but are not limited to, the following topics: • Thermal Engineering and Fluids Engineering • Mechanics • Kinematics, Dynamics, & Control of Mechanical Systems • Mechatronics, Robotics and Automation • Design, Manufacturing, & Product Development • Human and Machine Haptics Specific topics of interest include: Advanced Manufacturing Technology, Analysis and Decision of Industry & Manufacturing System, Applied Mechanics, Biomechanics, CAD/CAM Integration Technology, Complex Curve Design, Manufacturing & Application, Computational Mechanics, Computer-aided Geometric Design & Simulation, Fluid Dynamics, Fluid Mechanics, General mechanics, Geomechanics, Industrial Application of CAD, Machinery and Machine Design, Machine Vision and Learning, Material Science and Processing, Mechanical Power Engineering, Mechatronics and Robotics, Artificial Intelligence, PC Guided Design and Manufacture, Precision Manufacturing & Measurement, Precision Mechanics, Production Technology, Quality & Reliability Engineering, Renewable Energy Technologies, Science and Engineering Computing, Solid Mechanics, Structural Dynamics, System Dynamics and Simulation, Systems Science and Systems Engineering, Vehicle Dynamic Performance Simulation, Virtual-tech Based System & Process-simulation, etc.