{"title":"藤椰壳水泥基复合材料水化特性研究","authors":"A. Olorunnisola, A. Pitman, H. Mansfield-William","doi":"10.1163/1569159054699380","DOIUrl":null,"url":null,"abstract":"This work examines the effect of CaCl 2 on the hydration of rattan ( Laccosperma secundiflorum ) and coconut ( Cocos nucifera ) husk particles mixed with Portland cement. Hydration tests were conducted in sealed thermally insulated containers using an aggregate/cement/water ratio of 15 g : 200 g : 90.5 ml. CaCl 2 was added at four concentrations (by weight of cement): 0 (control) 1, 2 and 3% for the rattan and coconut husk particles, and at 0 (control) and 3% for a 50:50 mixture (by weight) of rattan and coconut husk. Hydration temperature was monitored on-line over a period of 23 h. The compatibility of both aggregates and their 50:50 mixture with Portland cement was assessed using the parameters of time to maximum hydration temperature, maximum hydration temperature, inhibitory index, and rate of heat generation. Findings showed that without CaCl 2 both aggregates exhibited relatively low level of compatibility with Portland cement, with the rattan particles exhibiting relatively higher degree of inhibition. The addition resulted in reduced setting time (about 60%), increased hydration temperature (50–80%), lower inhibitory index and higher rate of heat generation in all the aggregate/cement mixtures. Recommendations for further research include the identification of the cement-inhibitory chemicals present in coconut husk and rattan and investigations on the mechanism of CaCl 2 interaction with rattan/cement and coconut husk/cement systems.","PeriodicalId":39305,"journal":{"name":"Journal of Bamboo and Rattan","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Hydration characteristics of cement-bonded composites made from rattan cane and coconut husk\",\"authors\":\"A. Olorunnisola, A. Pitman, H. Mansfield-William\",\"doi\":\"10.1163/1569159054699380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work examines the effect of CaCl 2 on the hydration of rattan ( Laccosperma secundiflorum ) and coconut ( Cocos nucifera ) husk particles mixed with Portland cement. Hydration tests were conducted in sealed thermally insulated containers using an aggregate/cement/water ratio of 15 g : 200 g : 90.5 ml. CaCl 2 was added at four concentrations (by weight of cement): 0 (control) 1, 2 and 3% for the rattan and coconut husk particles, and at 0 (control) and 3% for a 50:50 mixture (by weight) of rattan and coconut husk. Hydration temperature was monitored on-line over a period of 23 h. The compatibility of both aggregates and their 50:50 mixture with Portland cement was assessed using the parameters of time to maximum hydration temperature, maximum hydration temperature, inhibitory index, and rate of heat generation. Findings showed that without CaCl 2 both aggregates exhibited relatively low level of compatibility with Portland cement, with the rattan particles exhibiting relatively higher degree of inhibition. The addition resulted in reduced setting time (about 60%), increased hydration temperature (50–80%), lower inhibitory index and higher rate of heat generation in all the aggregate/cement mixtures. Recommendations for further research include the identification of the cement-inhibitory chemicals present in coconut husk and rattan and investigations on the mechanism of CaCl 2 interaction with rattan/cement and coconut husk/cement systems.\",\"PeriodicalId\":39305,\"journal\":{\"name\":\"Journal of Bamboo and Rattan\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bamboo and Rattan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1163/1569159054699380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bamboo and Rattan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/1569159054699380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Hydration characteristics of cement-bonded composites made from rattan cane and coconut husk
This work examines the effect of CaCl 2 on the hydration of rattan ( Laccosperma secundiflorum ) and coconut ( Cocos nucifera ) husk particles mixed with Portland cement. Hydration tests were conducted in sealed thermally insulated containers using an aggregate/cement/water ratio of 15 g : 200 g : 90.5 ml. CaCl 2 was added at four concentrations (by weight of cement): 0 (control) 1, 2 and 3% for the rattan and coconut husk particles, and at 0 (control) and 3% for a 50:50 mixture (by weight) of rattan and coconut husk. Hydration temperature was monitored on-line over a period of 23 h. The compatibility of both aggregates and their 50:50 mixture with Portland cement was assessed using the parameters of time to maximum hydration temperature, maximum hydration temperature, inhibitory index, and rate of heat generation. Findings showed that without CaCl 2 both aggregates exhibited relatively low level of compatibility with Portland cement, with the rattan particles exhibiting relatively higher degree of inhibition. The addition resulted in reduced setting time (about 60%), increased hydration temperature (50–80%), lower inhibitory index and higher rate of heat generation in all the aggregate/cement mixtures. Recommendations for further research include the identification of the cement-inhibitory chemicals present in coconut husk and rattan and investigations on the mechanism of CaCl 2 interaction with rattan/cement and coconut husk/cement systems.
期刊介绍:
The Journal of Bamboo and Rattan is a peer-reviewed scientific journal and provides a forum for scientific articles and reviews on all aspects of fast growing, multi-purpose pliable species. The scope of the journal encompasses income security, craft industry, small to medium size enterprises, industrial fibre and fuel. Articles related to natural distribution and conservation of species, genetics and biotechnology, harvesting and production systems, and environmental applications are also included, as well as papers on marketing and policy restraints in relation to bamboo, rattan and related species.