{"title":"利用动态几何软件演示教学策略","authors":"Martín Eduardo Acosta Gempeler, Santiago Cardozo","doi":"10.17227/TED.NUM49-9884","DOIUrl":null,"url":null,"abstract":"Nos interesa buscar estrategias de enseñanza que aprovechen el potencial del software de geometría dinámica para promover en los estudiantes el uso espontáneo de razonamientos deductivos para justificar afirmaciones (introducción a la demostración). Consideramos que los estudiantes pueden utilizar el razonamiento deductivo de manera implícita en la resolución de problemas y nos interesa estudiar las condiciones que lo llevan a producir conclusiones a partir de unos datos iniciales utilizando implicaciones lógicas, aunque no hagan referencia explícita a dichas implicaciones. Ese uso implícito depende del grado de convicción adquirido sobre las implicaciones que llamamos Hechos Geométricos[1] (HG), y proponemos que este grado de convicción puede construirse gracias a la experimentación con el Software. Exploramos las variables que afectan el diseño de una secuencia de actividades desde el enfoque de la Teoría de Situaciones Didácticas que busca que los estudiantes, a través de la experimentación, identifiquen HG y se convenzan de su carácter apodíctico, para luego utilizar esos HG en razonamientos deductivos implícitos para resolver problemas de construcción, de verificación, de anticipación y de demostración. Hacemos la hipótesis de que la situación fundamental que corresponde a la demostración en el contexto de la construcción geométrica con SGD es una situación en la que a partir de un protocolo de construcción escrito se solicita predecir si determinadas propiedades se cumplen y se mantienen al arrastrar. \n \n[1] Un Hecho Geométrico, HG, es una afirmación “necesariamente verdadera” que se refiere a la implicación lógica entre propiedades. Un Hecho Geométrico puede constatarse, verificarse y experimentarse. Este puede convertirse en un Teorema si se hace una demostración que lo vincula a un sistema teórico","PeriodicalId":30949,"journal":{"name":"Tecne Episteme y Didaxis","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Una estrategia de enseñanza de la demostración utilizando software de geometría dinámica\",\"authors\":\"Martín Eduardo Acosta Gempeler, Santiago Cardozo\",\"doi\":\"10.17227/TED.NUM49-9884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nos interesa buscar estrategias de enseñanza que aprovechen el potencial del software de geometría dinámica para promover en los estudiantes el uso espontáneo de razonamientos deductivos para justificar afirmaciones (introducción a la demostración). Consideramos que los estudiantes pueden utilizar el razonamiento deductivo de manera implícita en la resolución de problemas y nos interesa estudiar las condiciones que lo llevan a producir conclusiones a partir de unos datos iniciales utilizando implicaciones lógicas, aunque no hagan referencia explícita a dichas implicaciones. Ese uso implícito depende del grado de convicción adquirido sobre las implicaciones que llamamos Hechos Geométricos[1] (HG), y proponemos que este grado de convicción puede construirse gracias a la experimentación con el Software. Exploramos las variables que afectan el diseño de una secuencia de actividades desde el enfoque de la Teoría de Situaciones Didácticas que busca que los estudiantes, a través de la experimentación, identifiquen HG y se convenzan de su carácter apodíctico, para luego utilizar esos HG en razonamientos deductivos implícitos para resolver problemas de construcción, de verificación, de anticipación y de demostración. Hacemos la hipótesis de que la situación fundamental que corresponde a la demostración en el contexto de la construcción geométrica con SGD es una situación en la que a partir de un protocolo de construcción escrito se solicita predecir si determinadas propiedades se cumplen y se mantienen al arrastrar. \\n \\n[1] Un Hecho Geométrico, HG, es una afirmación “necesariamente verdadera” que se refiere a la implicación lógica entre propiedades. Un Hecho Geométrico puede constatarse, verificarse y experimentarse. Este puede convertirse en un Teorema si se hace una demostración que lo vincula a un sistema teórico\",\"PeriodicalId\":30949,\"journal\":{\"name\":\"Tecne Episteme y Didaxis\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tecne Episteme y Didaxis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17227/TED.NUM49-9884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tecne Episteme y Didaxis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17227/TED.NUM49-9884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Una estrategia de enseñanza de la demostración utilizando software de geometría dinámica
Nos interesa buscar estrategias de enseñanza que aprovechen el potencial del software de geometría dinámica para promover en los estudiantes el uso espontáneo de razonamientos deductivos para justificar afirmaciones (introducción a la demostración). Consideramos que los estudiantes pueden utilizar el razonamiento deductivo de manera implícita en la resolución de problemas y nos interesa estudiar las condiciones que lo llevan a producir conclusiones a partir de unos datos iniciales utilizando implicaciones lógicas, aunque no hagan referencia explícita a dichas implicaciones. Ese uso implícito depende del grado de convicción adquirido sobre las implicaciones que llamamos Hechos Geométricos[1] (HG), y proponemos que este grado de convicción puede construirse gracias a la experimentación con el Software. Exploramos las variables que afectan el diseño de una secuencia de actividades desde el enfoque de la Teoría de Situaciones Didácticas que busca que los estudiantes, a través de la experimentación, identifiquen HG y se convenzan de su carácter apodíctico, para luego utilizar esos HG en razonamientos deductivos implícitos para resolver problemas de construcción, de verificación, de anticipación y de demostración. Hacemos la hipótesis de que la situación fundamental que corresponde a la demostración en el contexto de la construcción geométrica con SGD es una situación en la que a partir de un protocolo de construcción escrito se solicita predecir si determinadas propiedades se cumplen y se mantienen al arrastrar.
[1] Un Hecho Geométrico, HG, es una afirmación “necesariamente verdadera” que se refiere a la implicación lógica entre propiedades. Un Hecho Geométrico puede constatarse, verificarse y experimentarse. Este puede convertirse en un Teorema si se hace una demostración que lo vincula a un sistema teórico