机器人导航的生物启发拓扑高斯ARAM

W. Chin, C. Loo
{"title":"机器人导航的生物启发拓扑高斯ARAM","authors":"W. Chin, C. Loo","doi":"10.1109/RVSP.2013.66","DOIUrl":null,"url":null,"abstract":"This paper presents a neural network for online topological map construction inspired by the beta oscillations and hippocampal place cell learning. In our proposed method, nodes in the topological map represent place cells (robot location) while edges connect nodes and store robot action (i.e. orientation, direction). Our proposed method (TGARAM) comprises 2 layers: the input layer and the memory layer. The input layer collects sensory information and cluster the obtained information into a set of topological nodes incrementally. In the memory layer, the clustered information is used as a topological map where nodes are associated with actions. Then, topological nodes are clustered together into space regions to represent the environment in the memory layer. The advantages of the proposed method are that 1) it does not require high-level cognitive processes and prior knowledge which is able to work in natural environment, 2) it can process multiple sensory sources simultaneously in continuous space, and 3) it is an incremental and unsupervised learning method. Thus, topological map generated by TGARAM is utilised for path planning to constitutes a basis for robot navigation. Finally, we validate the proposed method through several experiments.","PeriodicalId":6585,"journal":{"name":"2013 Second International Conference on Robot, Vision and Signal Processing","volume":"53 1","pages":"265-269"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biologically Inspired Topological Gaussian ARAM for Robot Navigation\",\"authors\":\"W. Chin, C. Loo\",\"doi\":\"10.1109/RVSP.2013.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a neural network for online topological map construction inspired by the beta oscillations and hippocampal place cell learning. In our proposed method, nodes in the topological map represent place cells (robot location) while edges connect nodes and store robot action (i.e. orientation, direction). Our proposed method (TGARAM) comprises 2 layers: the input layer and the memory layer. The input layer collects sensory information and cluster the obtained information into a set of topological nodes incrementally. In the memory layer, the clustered information is used as a topological map where nodes are associated with actions. Then, topological nodes are clustered together into space regions to represent the environment in the memory layer. The advantages of the proposed method are that 1) it does not require high-level cognitive processes and prior knowledge which is able to work in natural environment, 2) it can process multiple sensory sources simultaneously in continuous space, and 3) it is an incremental and unsupervised learning method. Thus, topological map generated by TGARAM is utilised for path planning to constitutes a basis for robot navigation. Finally, we validate the proposed method through several experiments.\",\"PeriodicalId\":6585,\"journal\":{\"name\":\"2013 Second International Conference on Robot, Vision and Signal Processing\",\"volume\":\"53 1\",\"pages\":\"265-269\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Second International Conference on Robot, Vision and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RVSP.2013.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Second International Conference on Robot, Vision and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RVSP.2013.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于β振荡和海马位置细胞学习的在线拓扑图构建神经网络。在我们提出的方法中,拓扑图中的节点代表位置单元(机器人位置),而边缘连接节点并存储机器人动作(即方向,方向)。我们提出的方法(TGARAM)包括两层:输入层和存储层。输入层收集感官信息,并将获得的信息增量聚类到一组拓扑节点中。在内存层中,聚类信息用作拓扑映射,其中节点与操作相关联。然后,将拓扑节点聚在一起形成空间区域,以表示内存层中的环境。该方法的优点是:1)不需要高级认知过程和先验知识,能够在自然环境中工作;2)可以在连续空间中同时处理多个感觉源;3)是一种增量式无监督学习方法。因此,利用TGARAM生成的拓扑图进行路径规划,为机器人导航奠定基础。最后,通过实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biologically Inspired Topological Gaussian ARAM for Robot Navigation
This paper presents a neural network for online topological map construction inspired by the beta oscillations and hippocampal place cell learning. In our proposed method, nodes in the topological map represent place cells (robot location) while edges connect nodes and store robot action (i.e. orientation, direction). Our proposed method (TGARAM) comprises 2 layers: the input layer and the memory layer. The input layer collects sensory information and cluster the obtained information into a set of topological nodes incrementally. In the memory layer, the clustered information is used as a topological map where nodes are associated with actions. Then, topological nodes are clustered together into space regions to represent the environment in the memory layer. The advantages of the proposed method are that 1) it does not require high-level cognitive processes and prior knowledge which is able to work in natural environment, 2) it can process multiple sensory sources simultaneously in continuous space, and 3) it is an incremental and unsupervised learning method. Thus, topological map generated by TGARAM is utilised for path planning to constitutes a basis for robot navigation. Finally, we validate the proposed method through several experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信