{"title":"机器人导航的生物启发拓扑高斯ARAM","authors":"W. Chin, C. Loo","doi":"10.1109/RVSP.2013.66","DOIUrl":null,"url":null,"abstract":"This paper presents a neural network for online topological map construction inspired by the beta oscillations and hippocampal place cell learning. In our proposed method, nodes in the topological map represent place cells (robot location) while edges connect nodes and store robot action (i.e. orientation, direction). Our proposed method (TGARAM) comprises 2 layers: the input layer and the memory layer. The input layer collects sensory information and cluster the obtained information into a set of topological nodes incrementally. In the memory layer, the clustered information is used as a topological map where nodes are associated with actions. Then, topological nodes are clustered together into space regions to represent the environment in the memory layer. The advantages of the proposed method are that 1) it does not require high-level cognitive processes and prior knowledge which is able to work in natural environment, 2) it can process multiple sensory sources simultaneously in continuous space, and 3) it is an incremental and unsupervised learning method. Thus, topological map generated by TGARAM is utilised for path planning to constitutes a basis for robot navigation. Finally, we validate the proposed method through several experiments.","PeriodicalId":6585,"journal":{"name":"2013 Second International Conference on Robot, Vision and Signal Processing","volume":"53 1","pages":"265-269"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biologically Inspired Topological Gaussian ARAM for Robot Navigation\",\"authors\":\"W. Chin, C. Loo\",\"doi\":\"10.1109/RVSP.2013.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a neural network for online topological map construction inspired by the beta oscillations and hippocampal place cell learning. In our proposed method, nodes in the topological map represent place cells (robot location) while edges connect nodes and store robot action (i.e. orientation, direction). Our proposed method (TGARAM) comprises 2 layers: the input layer and the memory layer. The input layer collects sensory information and cluster the obtained information into a set of topological nodes incrementally. In the memory layer, the clustered information is used as a topological map where nodes are associated with actions. Then, topological nodes are clustered together into space regions to represent the environment in the memory layer. The advantages of the proposed method are that 1) it does not require high-level cognitive processes and prior knowledge which is able to work in natural environment, 2) it can process multiple sensory sources simultaneously in continuous space, and 3) it is an incremental and unsupervised learning method. Thus, topological map generated by TGARAM is utilised for path planning to constitutes a basis for robot navigation. Finally, we validate the proposed method through several experiments.\",\"PeriodicalId\":6585,\"journal\":{\"name\":\"2013 Second International Conference on Robot, Vision and Signal Processing\",\"volume\":\"53 1\",\"pages\":\"265-269\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Second International Conference on Robot, Vision and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RVSP.2013.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Second International Conference on Robot, Vision and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RVSP.2013.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biologically Inspired Topological Gaussian ARAM for Robot Navigation
This paper presents a neural network for online topological map construction inspired by the beta oscillations and hippocampal place cell learning. In our proposed method, nodes in the topological map represent place cells (robot location) while edges connect nodes and store robot action (i.e. orientation, direction). Our proposed method (TGARAM) comprises 2 layers: the input layer and the memory layer. The input layer collects sensory information and cluster the obtained information into a set of topological nodes incrementally. In the memory layer, the clustered information is used as a topological map where nodes are associated with actions. Then, topological nodes are clustered together into space regions to represent the environment in the memory layer. The advantages of the proposed method are that 1) it does not require high-level cognitive processes and prior knowledge which is able to work in natural environment, 2) it can process multiple sensory sources simultaneously in continuous space, and 3) it is an incremental and unsupervised learning method. Thus, topological map generated by TGARAM is utilised for path planning to constitutes a basis for robot navigation. Finally, we validate the proposed method through several experiments.