{"title":"火花等离子烧结法制备La(2/3−x)Li3xTiO3陶瓷的结构和锂离子电导率表征","authors":"Trong Le Dinh, Tin Nguyen Huu, Hao PHAM VAN","doi":"10.15625/0868-3166/17946","DOIUrl":null,"url":null,"abstract":"In this work, La(2/3)-xLi3xTiO3 (LLTO) dense ceramic samples have been prepared by high-energy ball milling and spark plasma sintering (SPS) route. The crystal structures, microstructures of the samples were characterized by X-ray powder diffraction, FE-SEM, and their Li-ion conductive properties investigated by AC impedance spectroscopy. At 21 oC, the LLTO ceramic samples possessed the grain conductivity and grain boundary/total conductivity of σg = 8.3×10-4 S cm-1 and σgb = 2.3×10-5 S cm-1, respectively. In the research temperature range from 21 oC to 120 oC, the mechanism of ion conduction is thermally activated. The activation energies for grain and grain boundary conductivities are Eag = 0.26 eV and Eagb = 0.43 eV, respectively. \nKeywords: High energy mechanical milling, LLTO ceramics, Spark plasma sintering, Lithium ionic conductivity, Impedance \nClassification numbers: 81.05.Je, 81.20.Ev, 72.20.-i, 61.72.Mm, 82.47.Aa, 84.37.+q","PeriodicalId":10571,"journal":{"name":"Communications in Physics","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHARACTERIZATION OF STRUCTURE AND Li-IONIC CONDUCTIVITY OF La(2/3−x)Li3xTiO3 CERAMICS PREPARED BY SPARK PLASMA SINTERING\",\"authors\":\"Trong Le Dinh, Tin Nguyen Huu, Hao PHAM VAN\",\"doi\":\"10.15625/0868-3166/17946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, La(2/3)-xLi3xTiO3 (LLTO) dense ceramic samples have been prepared by high-energy ball milling and spark plasma sintering (SPS) route. The crystal structures, microstructures of the samples were characterized by X-ray powder diffraction, FE-SEM, and their Li-ion conductive properties investigated by AC impedance spectroscopy. At 21 oC, the LLTO ceramic samples possessed the grain conductivity and grain boundary/total conductivity of σg = 8.3×10-4 S cm-1 and σgb = 2.3×10-5 S cm-1, respectively. In the research temperature range from 21 oC to 120 oC, the mechanism of ion conduction is thermally activated. The activation energies for grain and grain boundary conductivities are Eag = 0.26 eV and Eagb = 0.43 eV, respectively. \\nKeywords: High energy mechanical milling, LLTO ceramics, Spark plasma sintering, Lithium ionic conductivity, Impedance \\nClassification numbers: 81.05.Je, 81.20.Ev, 72.20.-i, 61.72.Mm, 82.47.Aa, 84.37.+q\",\"PeriodicalId\":10571,\"journal\":{\"name\":\"Communications in Physics\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/0868-3166/17946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0868-3166/17946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文采用高能球磨和放电等离子烧结的方法制备了La(2/3)-xLi3xTiO3 (LLTO)致密陶瓷样品。采用x射线粉末衍射、FE-SEM对样品的晶体结构、微观结构进行了表征,并用交流阻抗谱研究了样品的锂离子导电性能。在21℃时,LLTO陶瓷样品的晶粒电导率和晶界/总电导率分别为σg = 8.3×10-4 S cm-1和σgb = 2.3×10-5 S cm-1。在21 ~ 120℃的研究温度范围内,离子的传导机制是热激活的。晶粒和晶界电导率的活化能分别为Eag = 0.26 eV和Eagb = 0.43 eV。关键词:高能机械铣削,LLTO陶瓷,火花等离子烧结,锂离子电导率,阻抗分类数:81.05我,81.20。电动汽车,72.20。我,61.72。82.47毫米,。Aa, 84.37。+ q
CHARACTERIZATION OF STRUCTURE AND Li-IONIC CONDUCTIVITY OF La(2/3−x)Li3xTiO3 CERAMICS PREPARED BY SPARK PLASMA SINTERING
In this work, La(2/3)-xLi3xTiO3 (LLTO) dense ceramic samples have been prepared by high-energy ball milling and spark plasma sintering (SPS) route. The crystal structures, microstructures of the samples were characterized by X-ray powder diffraction, FE-SEM, and their Li-ion conductive properties investigated by AC impedance spectroscopy. At 21 oC, the LLTO ceramic samples possessed the grain conductivity and grain boundary/total conductivity of σg = 8.3×10-4 S cm-1 and σgb = 2.3×10-5 S cm-1, respectively. In the research temperature range from 21 oC to 120 oC, the mechanism of ion conduction is thermally activated. The activation energies for grain and grain boundary conductivities are Eag = 0.26 eV and Eagb = 0.43 eV, respectively.
Keywords: High energy mechanical milling, LLTO ceramics, Spark plasma sintering, Lithium ionic conductivity, Impedance
Classification numbers: 81.05.Je, 81.20.Ev, 72.20.-i, 61.72.Mm, 82.47.Aa, 84.37.+q