{"title":"基于无人机平台的核相关滤波融合多特征目标跟踪","authors":"Zhouzhou Liu, Mengna Liu, Yangmei Zhang","doi":"10.1049/wss2.12029","DOIUrl":null,"url":null,"abstract":"<p>As unmanned aerial vehicle (UAV) emerged as a flexible acquisition system that is widely used in military and civilian fields, efficient target tracking algorithm is in urgent need for UAV-based computer vision. Although research studies have been reported on typical interferences in the tracking process such as scale change, occlusion, distortion etc., some issues still exist for the target tracking algorithm based on UAV vision. This study exploited the features hidden in different colour spaces, and proposed a multi-feature multi-filter fusion tracking method that combines the HSV (hue, saturation and value) colour space with the histogram of oriented gradient (HOG) feature. The HSV colour space is proved to be able to discriminate objects under different conditions. The HOG of each HSV channel is utilised to train Kernelised correlation filters (KCF), respectively. The final tracking result is the candidate result with the biggest peak sidelobe ratio (PSR). Computer simulations proved that the fusion strategy proposed in this study can effectively improve the tracking performance of the tracker especially when the image sequences are interfered by deformation, occlusion, low resolution, etc. The performance of the tracker is also tested on UAV.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12029","citationCount":"0","resultStr":"{\"title\":\"Kernelised correlation filters target tracking fused multi-feature based on the unmanned aerial vehicle platform\",\"authors\":\"Zhouzhou Liu, Mengna Liu, Yangmei Zhang\",\"doi\":\"10.1049/wss2.12029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As unmanned aerial vehicle (UAV) emerged as a flexible acquisition system that is widely used in military and civilian fields, efficient target tracking algorithm is in urgent need for UAV-based computer vision. Although research studies have been reported on typical interferences in the tracking process such as scale change, occlusion, distortion etc., some issues still exist for the target tracking algorithm based on UAV vision. This study exploited the features hidden in different colour spaces, and proposed a multi-feature multi-filter fusion tracking method that combines the HSV (hue, saturation and value) colour space with the histogram of oriented gradient (HOG) feature. The HSV colour space is proved to be able to discriminate objects under different conditions. The HOG of each HSV channel is utilised to train Kernelised correlation filters (KCF), respectively. The final tracking result is the candidate result with the biggest peak sidelobe ratio (PSR). Computer simulations proved that the fusion strategy proposed in this study can effectively improve the tracking performance of the tracker especially when the image sequences are interfered by deformation, occlusion, low resolution, etc. The performance of the tracker is also tested on UAV.</p>\",\"PeriodicalId\":51726,\"journal\":{\"name\":\"IET Wireless Sensor Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12029\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Wireless Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Kernelised correlation filters target tracking fused multi-feature based on the unmanned aerial vehicle platform
As unmanned aerial vehicle (UAV) emerged as a flexible acquisition system that is widely used in military and civilian fields, efficient target tracking algorithm is in urgent need for UAV-based computer vision. Although research studies have been reported on typical interferences in the tracking process such as scale change, occlusion, distortion etc., some issues still exist for the target tracking algorithm based on UAV vision. This study exploited the features hidden in different colour spaces, and proposed a multi-feature multi-filter fusion tracking method that combines the HSV (hue, saturation and value) colour space with the histogram of oriented gradient (HOG) feature. The HSV colour space is proved to be able to discriminate objects under different conditions. The HOG of each HSV channel is utilised to train Kernelised correlation filters (KCF), respectively. The final tracking result is the candidate result with the biggest peak sidelobe ratio (PSR). Computer simulations proved that the fusion strategy proposed in this study can effectively improve the tracking performance of the tracker especially when the image sequences are interfered by deformation, occlusion, low resolution, etc. The performance of the tracker is also tested on UAV.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.