PE-ALD制备n-GaP/p-Si异质结太阳能电池

A. Gudovskikh, A. Uvarov, I. Morozov, A. Baranov, D. Kudryashov, E. Nikitina, J. Kleider
{"title":"PE-ALD制备n-GaP/p-Si异质结太阳能电池","authors":"A. Gudovskikh, A. Uvarov, I. Morozov, A. Baranov, D. Kudryashov, E. Nikitina, J. Kleider","doi":"10.1002/PSSC.201700150","DOIUrl":null,"url":null,"abstract":"Significant progress in photovoltaic conversion of solar energy can be achieved by new technological approaches that will improve the efficiency of solar cells and make them appropriate for mass production. A new technological approach for the growth of III-V compounds on Si substrates using low temperature plasma-enhanced atomic layer deposition (PE-ALD) is explored in the paper. This technique, which consists of alternatively changing the phosphorus and gallium atom source flows providing the growth of one monolayer by cycle, was developed for the growth of GaP films on Si substrates in a standard PECVD setup at 380 °C using PH3 and TMG (Trimethylgallium) as sources of III and V atoms. First (n)GaP/(p)c-Si anisotype heterojunction solar cell structures fabricated by PE-ALD exhibit open circuit voltage values similar to that obtained for (n)a-Si:H/(p)c-Si heterojunctions fabricated using the same (p)c-Si substrates. However (n)GaP/(p)c-Si solar cells demonstrates a potential to extend a high quantum efficiency in the short wavelength region due to lower absorption losses in the GaP emitter layer.","PeriodicalId":20065,"journal":{"name":"Physica Status Solidi (c)","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"n-GaP/p-Si Heterojunction Solar Cells Fabricated by PE-ALD\",\"authors\":\"A. Gudovskikh, A. Uvarov, I. Morozov, A. Baranov, D. Kudryashov, E. Nikitina, J. Kleider\",\"doi\":\"10.1002/PSSC.201700150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significant progress in photovoltaic conversion of solar energy can be achieved by new technological approaches that will improve the efficiency of solar cells and make them appropriate for mass production. A new technological approach for the growth of III-V compounds on Si substrates using low temperature plasma-enhanced atomic layer deposition (PE-ALD) is explored in the paper. This technique, which consists of alternatively changing the phosphorus and gallium atom source flows providing the growth of one monolayer by cycle, was developed for the growth of GaP films on Si substrates in a standard PECVD setup at 380 °C using PH3 and TMG (Trimethylgallium) as sources of III and V atoms. First (n)GaP/(p)c-Si anisotype heterojunction solar cell structures fabricated by PE-ALD exhibit open circuit voltage values similar to that obtained for (n)a-Si:H/(p)c-Si heterojunctions fabricated using the same (p)c-Si substrates. However (n)GaP/(p)c-Si solar cells demonstrates a potential to extend a high quantum efficiency in the short wavelength region due to lower absorption losses in the GaP emitter layer.\",\"PeriodicalId\":20065,\"journal\":{\"name\":\"Physica Status Solidi (c)\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi (c)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/PSSC.201700150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi (c)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/PSSC.201700150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

新的技术方法可以提高太阳能电池的效率,使其适合大规模生产,从而在太阳能的光电转换方面取得重大进展。本文探索了一种低温等离子体增强原子层沉积(PE-ALD)在Si衬底上生长III-V化合物的新技术。该技术由交替改变磷和镓原子源流组成,通过循环提供单层的生长,用于在380°C的标准PECVD装置中在Si衬底上生长GaP薄膜,使用PH3和TMG(三甲基镓)作为III和V原子源。首先(n)由PE-ALD制备的GaP/(p)c-Si异质结太阳能电池结构的开路电压值与使用相同(p)c-Si衬底制备的(n)a-Si:H/(p)c-Si异质结的开路电压值相似。然而,(n)GaP/(p)c-Si太阳能电池显示出在短波长区域扩展高量子效率的潜力,因为在GaP发射层中吸收损耗较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
n-GaP/p-Si Heterojunction Solar Cells Fabricated by PE-ALD
Significant progress in photovoltaic conversion of solar energy can be achieved by new technological approaches that will improve the efficiency of solar cells and make them appropriate for mass production. A new technological approach for the growth of III-V compounds on Si substrates using low temperature plasma-enhanced atomic layer deposition (PE-ALD) is explored in the paper. This technique, which consists of alternatively changing the phosphorus and gallium atom source flows providing the growth of one monolayer by cycle, was developed for the growth of GaP films on Si substrates in a standard PECVD setup at 380 °C using PH3 and TMG (Trimethylgallium) as sources of III and V atoms. First (n)GaP/(p)c-Si anisotype heterojunction solar cell structures fabricated by PE-ALD exhibit open circuit voltage values similar to that obtained for (n)a-Si:H/(p)c-Si heterojunctions fabricated using the same (p)c-Si substrates. However (n)GaP/(p)c-Si solar cells demonstrates a potential to extend a high quantum efficiency in the short wavelength region due to lower absorption losses in the GaP emitter layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信