Ji-kun Xie, Huaiyang Yuan, Shengli Ma, Shaoyan Gao, Fuli Li, R. Duine
{"title":"两个遥远巨磁体之间的静止量子纠缠和转向","authors":"Ji-kun Xie, Huaiyang Yuan, Shengli Ma, Shaoyan Gao, Fuli Li, R. Duine","doi":"10.1088/2058-9565/acd576","DOIUrl":null,"url":null,"abstract":"Generating and manipulating magnon quantum states for quantum information processing is a central topic in quantum magnonics. The conventional strategy amplifies the nonlinear interaction among magnons to manifest their quantum correlations at cryogenic temperatures, which is challenging for magnets with vanishingly small nonlinearities. Here we propose an unconventional approach to prepare entangled states of two distant magnon modes by applying a two-tone Floquet field to each magnet inside a microwave cavity. The Floquet driving can effectively generate parametric interaction between magnons and photons, and thus opens an indirect entanglement channel between the two magnon modes mediated by cavity photons. By optimizing the relative ratio of the magnon–photon coupling and the detuning between the magnon modes, the two magnon modes can reach a stationary and robust entanglement, of which the strength is enhanced compared with entanglement generated via magnetic nonlinearities. Furthermore, one-way steering between the two magnets is realized by engineering unequal damping rates of the two magnets while the steering asymmetry can be efficiently modulated by tuning the coupling strength of magnons and cavity photons. The essential physics of our findings universally applies to a wide class of magnets with small nonlinearities and may find promising applications in engineering robust magnon quantum states for quantum information science.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"5 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stationary quantum entanglement and steering between two distant macromagnets\",\"authors\":\"Ji-kun Xie, Huaiyang Yuan, Shengli Ma, Shaoyan Gao, Fuli Li, R. Duine\",\"doi\":\"10.1088/2058-9565/acd576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generating and manipulating magnon quantum states for quantum information processing is a central topic in quantum magnonics. The conventional strategy amplifies the nonlinear interaction among magnons to manifest their quantum correlations at cryogenic temperatures, which is challenging for magnets with vanishingly small nonlinearities. Here we propose an unconventional approach to prepare entangled states of two distant magnon modes by applying a two-tone Floquet field to each magnet inside a microwave cavity. The Floquet driving can effectively generate parametric interaction between magnons and photons, and thus opens an indirect entanglement channel between the two magnon modes mediated by cavity photons. By optimizing the relative ratio of the magnon–photon coupling and the detuning between the magnon modes, the two magnon modes can reach a stationary and robust entanglement, of which the strength is enhanced compared with entanglement generated via magnetic nonlinearities. Furthermore, one-way steering between the two magnets is realized by engineering unequal damping rates of the two magnets while the steering asymmetry can be efficiently modulated by tuning the coupling strength of magnons and cavity photons. The essential physics of our findings universally applies to a wide class of magnets with small nonlinearities and may find promising applications in engineering robust magnon quantum states for quantum information science.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/acd576\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/acd576","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Stationary quantum entanglement and steering between two distant macromagnets
Generating and manipulating magnon quantum states for quantum information processing is a central topic in quantum magnonics. The conventional strategy amplifies the nonlinear interaction among magnons to manifest their quantum correlations at cryogenic temperatures, which is challenging for magnets with vanishingly small nonlinearities. Here we propose an unconventional approach to prepare entangled states of two distant magnon modes by applying a two-tone Floquet field to each magnet inside a microwave cavity. The Floquet driving can effectively generate parametric interaction between magnons and photons, and thus opens an indirect entanglement channel between the two magnon modes mediated by cavity photons. By optimizing the relative ratio of the magnon–photon coupling and the detuning between the magnon modes, the two magnon modes can reach a stationary and robust entanglement, of which the strength is enhanced compared with entanglement generated via magnetic nonlinearities. Furthermore, one-way steering between the two magnets is realized by engineering unequal damping rates of the two magnets while the steering asymmetry can be efficiently modulated by tuning the coupling strength of magnons and cavity photons. The essential physics of our findings universally applies to a wide class of magnets with small nonlinearities and may find promising applications in engineering robust magnon quantum states for quantum information science.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.