水蒸气对Cu-Zn双金属配位聚合物微观结构和稳定性的吸附

B. K. Oguntade, G. M. Watkins
{"title":"水蒸气对Cu-Zn双金属配位聚合物微观结构和稳定性的吸附","authors":"B. K. Oguntade, G. M. Watkins","doi":"10.4314/tjs.v49i1.24","DOIUrl":null,"url":null,"abstract":"A current challenge in the design of synthesis lies in the incorporation of two or more transition metals into a coordination polymer. The most widely used approach has been to incorporate a second metal as a generally innocent (coordinatively saturated) part of a linear linker as in the case of multifunctional carboxylated porphyrins (MCPs). The empirical method has been used to obtain many other types of MCPs; however, the selective, direct replacement of one transition metal within a monometallic coordination polymer via controlled stoichiometry has not generally led to maintained structural fidelity. In this present work, three pyromellitic acid complexes were synthesized at room temperature and characterized by Elemental analysis, Powder X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy, N2 adsorption-desorption Isotherm, and Thermal analysis. The reaction in water-methanol between pyromellitic acid and copper ions by ambient precipitation method formed [CuH2B4C]·5H2O. When zinc is combined with copper and the ligand, [Cu2Zn(B4C)1.5(H2O)4.5]·9H2O is formed. A repeat of this step under solvothermal condition produced Solvo-[Cu2Zn(B4C)1.5(H2O)5]·2H2O. The N2-adsorption isotherm of these compounds showed them to be Type III according to the IUPAC classification, with small pores only capable of small molecule sorption. \nKeywords:  Coordination, microporous, polymer, pyromellitic, sorption","PeriodicalId":22207,"journal":{"name":"Tanzania Journal of Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption of Water Vapour on the Microstructure and Stability of Cu-Zn Bimetallic Coordination Polymer\",\"authors\":\"B. K. Oguntade, G. M. Watkins\",\"doi\":\"10.4314/tjs.v49i1.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A current challenge in the design of synthesis lies in the incorporation of two or more transition metals into a coordination polymer. The most widely used approach has been to incorporate a second metal as a generally innocent (coordinatively saturated) part of a linear linker as in the case of multifunctional carboxylated porphyrins (MCPs). The empirical method has been used to obtain many other types of MCPs; however, the selective, direct replacement of one transition metal within a monometallic coordination polymer via controlled stoichiometry has not generally led to maintained structural fidelity. In this present work, three pyromellitic acid complexes were synthesized at room temperature and characterized by Elemental analysis, Powder X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy, N2 adsorption-desorption Isotherm, and Thermal analysis. The reaction in water-methanol between pyromellitic acid and copper ions by ambient precipitation method formed [CuH2B4C]·5H2O. When zinc is combined with copper and the ligand, [Cu2Zn(B4C)1.5(H2O)4.5]·9H2O is formed. A repeat of this step under solvothermal condition produced Solvo-[Cu2Zn(B4C)1.5(H2O)5]·2H2O. The N2-adsorption isotherm of these compounds showed them to be Type III according to the IUPAC classification, with small pores only capable of small molecule sorption. \\nKeywords:  Coordination, microporous, polymer, pyromellitic, sorption\",\"PeriodicalId\":22207,\"journal\":{\"name\":\"Tanzania Journal of Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tanzania Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/tjs.v49i1.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tanzania Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/tjs.v49i1.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当前合成设计中的一个挑战在于将两种或两种以上的过渡金属结合到配位聚合物中。最广泛使用的方法是将第二种金属作为一般无害(协调饱和)的线性连接体的一部分,如多功能羧化卟啉(MCPs)的情况。经验方法已用于获得许多其他类型的mcp;然而,在单金属配位聚合物中,通过控制化学计量选择性地、直接地取代一种过渡金属,通常不能保持结构的保真度。本文在室温下合成了三种邻苯二甲酸配合物,并通过元素分析、粉末x射线衍射、傅里叶变换红外光谱、扫描电镜、N2吸附-解吸等温线和热分析对其进行了表征。邻苯二甲酸与铜离子在水-甲醇中通过环境沉淀法反应生成[CuH2B4C]·5H2O。锌与铜及配体结合生成[Cu2Zn(B4C)1.5(H2O)4.5]·9H2O。在溶剂热条件下重复这一步骤,得到Solvo-[Cu2Zn(B4C)1.5(H2O)5]·2H2O。根据IUPAC分类,这些化合物的n2吸附等温线为III型,孔径较小,只能吸附小分子。关键词:配位;微孔;聚合物
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adsorption of Water Vapour on the Microstructure and Stability of Cu-Zn Bimetallic Coordination Polymer
A current challenge in the design of synthesis lies in the incorporation of two or more transition metals into a coordination polymer. The most widely used approach has been to incorporate a second metal as a generally innocent (coordinatively saturated) part of a linear linker as in the case of multifunctional carboxylated porphyrins (MCPs). The empirical method has been used to obtain many other types of MCPs; however, the selective, direct replacement of one transition metal within a monometallic coordination polymer via controlled stoichiometry has not generally led to maintained structural fidelity. In this present work, three pyromellitic acid complexes were synthesized at room temperature and characterized by Elemental analysis, Powder X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy, N2 adsorption-desorption Isotherm, and Thermal analysis. The reaction in water-methanol between pyromellitic acid and copper ions by ambient precipitation method formed [CuH2B4C]·5H2O. When zinc is combined with copper and the ligand, [Cu2Zn(B4C)1.5(H2O)4.5]·9H2O is formed. A repeat of this step under solvothermal condition produced Solvo-[Cu2Zn(B4C)1.5(H2O)5]·2H2O. The N2-adsorption isotherm of these compounds showed them to be Type III according to the IUPAC classification, with small pores only capable of small molecule sorption. Keywords:  Coordination, microporous, polymer, pyromellitic, sorption
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信