{"title":"一种状态依赖时间演化的多约束路由算法","authors":"A. Mellouk, S. Hoceini, S. Zeadally","doi":"10.1145/2451248.2451254","DOIUrl":null,"url":null,"abstract":"This article proposes a state-dependent routing algorithm based on a global optimization cost function whose parameters are learned from the real-time state of the network with no a priori model. The proposed approach samples, estimates, and builds the model of pertinent and important aspects of the network environment such as type of traffic, QoS policies, resources, etc. It is based on the trial/error paradigm combined with swarm-adaptive approaches. The global system uses a model that combines both a stochastic planned prenavigation for the exploration phase with a deterministic approach for the backward phase. We conducted a performance analysis of the proposed algorithm using OPNET based on several topologies such as the Nippon telephone and telegraph network. The simulation results obtained demonstrate substantial performance improvements over traditional routing approaches as well as the benefits of learning approaches for networks with dynamically changing traffic.","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"14 1","pages":"6:1-6:21"},"PeriodicalIF":2.2000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A state-dependent time evolving multi-constraint routing algorithm\",\"authors\":\"A. Mellouk, S. Hoceini, S. Zeadally\",\"doi\":\"10.1145/2451248.2451254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a state-dependent routing algorithm based on a global optimization cost function whose parameters are learned from the real-time state of the network with no a priori model. The proposed approach samples, estimates, and builds the model of pertinent and important aspects of the network environment such as type of traffic, QoS policies, resources, etc. It is based on the trial/error paradigm combined with swarm-adaptive approaches. The global system uses a model that combines both a stochastic planned prenavigation for the exploration phase with a deterministic approach for the backward phase. We conducted a performance analysis of the proposed algorithm using OPNET based on several topologies such as the Nippon telephone and telegraph network. The simulation results obtained demonstrate substantial performance improvements over traditional routing approaches as well as the benefits of learning approaches for networks with dynamically changing traffic.\",\"PeriodicalId\":50919,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"volume\":\"14 1\",\"pages\":\"6:1-6:21\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2013-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/2451248.2451254\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2451248.2451254","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A state-dependent time evolving multi-constraint routing algorithm
This article proposes a state-dependent routing algorithm based on a global optimization cost function whose parameters are learned from the real-time state of the network with no a priori model. The proposed approach samples, estimates, and builds the model of pertinent and important aspects of the network environment such as type of traffic, QoS policies, resources, etc. It is based on the trial/error paradigm combined with swarm-adaptive approaches. The global system uses a model that combines both a stochastic planned prenavigation for the exploration phase with a deterministic approach for the backward phase. We conducted a performance analysis of the proposed algorithm using OPNET based on several topologies such as the Nippon telephone and telegraph network. The simulation results obtained demonstrate substantial performance improvements over traditional routing approaches as well as the benefits of learning approaches for networks with dynamically changing traffic.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.