{"title":"具有Sobolev临界指数和混合非线性的分数阶Kirchhoff方程的归一化基态","authors":"L. Kong, Haibo Chen","doi":"10.1063/5.0098126","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence of normalized ground states for nonlinear fractional Kirchhoff equations with Sobolev critical exponent and mixed nonlinearities in R3. To overcome the special difficulties created by the nonlocal term and fractional Sobolev critical term, we develop a perturbed Pohožaev method based on the Brézis–Lieb lemma and monotonicity trick. Using the Pohožaev manifold decomposition and fibering map, we prove the existence of a positive normalized ground state. Moreover, the asymptotic behavior of the obtained normalized solutions is also explored. These conclusions extend some known ones in previous papers.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"120 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Normalized ground states for fractional Kirchhoff equations with Sobolev critical exponent and mixed nonlinearities\",\"authors\":\"L. Kong, Haibo Chen\",\"doi\":\"10.1063/5.0098126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the existence of normalized ground states for nonlinear fractional Kirchhoff equations with Sobolev critical exponent and mixed nonlinearities in R3. To overcome the special difficulties created by the nonlocal term and fractional Sobolev critical term, we develop a perturbed Pohožaev method based on the Brézis–Lieb lemma and monotonicity trick. Using the Pohožaev manifold decomposition and fibering map, we prove the existence of a positive normalized ground state. Moreover, the asymptotic behavior of the obtained normalized solutions is also explored. These conclusions extend some known ones in previous papers.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0098126\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0098126","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Normalized ground states for fractional Kirchhoff equations with Sobolev critical exponent and mixed nonlinearities
In this paper, we study the existence of normalized ground states for nonlinear fractional Kirchhoff equations with Sobolev critical exponent and mixed nonlinearities in R3. To overcome the special difficulties created by the nonlocal term and fractional Sobolev critical term, we develop a perturbed Pohožaev method based on the Brézis–Lieb lemma and monotonicity trick. Using the Pohožaev manifold decomposition and fibering map, we prove the existence of a positive normalized ground state. Moreover, the asymptotic behavior of the obtained normalized solutions is also explored. These conclusions extend some known ones in previous papers.
期刊介绍:
Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects:
mathematical problems of modern physics;
complex analysis and its applications;
asymptotic problems of differential equations;
spectral theory including inverse problems and their applications;
geometry in large and differential geometry;
functional analysis, theory of representations, and operator algebras including ergodic theory.
The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.