锑化镓热光伏:不同滤光波长下的模拟与电学特性

Wan Emlin Suliza, Wan Abd Rashid, M. Z. Jamaludin, N. A. Rahman, M. Gamel, H. J. Lee, P. Ker
{"title":"锑化镓热光伏:不同滤光波长下的模拟与电学特性","authors":"Wan Emlin Suliza, Wan Abd Rashid, M. Z. Jamaludin, N. A. Rahman, M. Gamel, H. J. Lee, P. Ker","doi":"10.1109/ICP46580.2020.9206487","DOIUrl":null,"url":null,"abstract":"Gallium Antimonide (GaSb) Thermophotovoltaic (TPV) cell is a well-known device for waste-heat harvesting technology. To date, the conversion efficiency of the GaSb TPV cell remains low due to the presence of electrical and spectral losses. In this study, a GaSb TPV cell model is developed using the Silvaco TCAD simulation software. Validation on the simulation model was performed under atmospheric (AM) 1.5 standard test condition (STC) and TPV illumination conditions. Through the validation processes, a set of GaSb physical parameters that are reliable to be used for GaSb TPV cell simulation was established. Under AM1.5 testing condition, the electrical characteristic and performance of GaSb TPV of the reference cell were obtained from an experimental characterization on commercialized devices. A deviation in fill factor and cell efficiency was found between the cell sample and simulation model under AM1.5 illumination. This is due to the presence of resistance losses in the device. Nevertheless, a percentage error of below 3% was achieved under 1200 ° C TPV spectrum. Besides, it was found that a spectral filter that cuts at 2 μm increases the cell efficiency from 11.51% to 19.10% with a power output of 1.33 W/cm2. The finding in this study demonstrates the importance of minimizing the electrical losses and the determination of an optimal filtered spectrum wavelength for developing highperformance GaSb TPV cell.","PeriodicalId":6758,"journal":{"name":"2020 IEEE 8th International Conference on Photonics (ICP)","volume":"7 1","pages":"44-47"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gallium Antimonide Thermophotovoltaic: Simulation and Electrical Characterization Under Different Spectral Filtration Wavelengths\",\"authors\":\"Wan Emlin Suliza, Wan Abd Rashid, M. Z. Jamaludin, N. A. Rahman, M. Gamel, H. J. Lee, P. Ker\",\"doi\":\"10.1109/ICP46580.2020.9206487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gallium Antimonide (GaSb) Thermophotovoltaic (TPV) cell is a well-known device for waste-heat harvesting technology. To date, the conversion efficiency of the GaSb TPV cell remains low due to the presence of electrical and spectral losses. In this study, a GaSb TPV cell model is developed using the Silvaco TCAD simulation software. Validation on the simulation model was performed under atmospheric (AM) 1.5 standard test condition (STC) and TPV illumination conditions. Through the validation processes, a set of GaSb physical parameters that are reliable to be used for GaSb TPV cell simulation was established. Under AM1.5 testing condition, the electrical characteristic and performance of GaSb TPV of the reference cell were obtained from an experimental characterization on commercialized devices. A deviation in fill factor and cell efficiency was found between the cell sample and simulation model under AM1.5 illumination. This is due to the presence of resistance losses in the device. Nevertheless, a percentage error of below 3% was achieved under 1200 ° C TPV spectrum. Besides, it was found that a spectral filter that cuts at 2 μm increases the cell efficiency from 11.51% to 19.10% with a power output of 1.33 W/cm2. The finding in this study demonstrates the importance of minimizing the electrical losses and the determination of an optimal filtered spectrum wavelength for developing highperformance GaSb TPV cell.\",\"PeriodicalId\":6758,\"journal\":{\"name\":\"2020 IEEE 8th International Conference on Photonics (ICP)\",\"volume\":\"7 1\",\"pages\":\"44-47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 8th International Conference on Photonics (ICP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICP46580.2020.9206487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 8th International Conference on Photonics (ICP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICP46580.2020.9206487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

锑化镓(GaSb)热光伏(TPV)电池是一种众所周知的废热收集技术。迄今为止,由于电和频谱损失的存在,GaSb TPV电池的转换效率仍然很低。在本研究中,利用Silvaco TCAD仿真软件建立了GaSb TPV电池模型。在大气(AM) 1.5标准试验条件(STC)和TPV光照条件下对模拟模型进行了验证。通过验证过程,建立了一套可靠的GaSb物理参数,可用于GaSb TPV电池模拟。在AM1.5测试条件下,通过商业化设备上的实验表征,获得了参考电池的GaSb TPV的电学特性和性能。在AM1.5照明下,细胞样品与模拟模型在填充因子和效率上存在偏差。这是由于器件中存在电阻损失。然而,在1200°C TPV光谱下实现了低于3%的百分比误差。此外,发现在2 μm处切割的光谱滤波器使电池效率从11.51%提高到19.10%,输出功率为1.33 W/cm2。本研究的发现证明了最小化电损耗和确定最佳过滤光谱波长对于开发高性能GaSb TPV电池的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gallium Antimonide Thermophotovoltaic: Simulation and Electrical Characterization Under Different Spectral Filtration Wavelengths
Gallium Antimonide (GaSb) Thermophotovoltaic (TPV) cell is a well-known device for waste-heat harvesting technology. To date, the conversion efficiency of the GaSb TPV cell remains low due to the presence of electrical and spectral losses. In this study, a GaSb TPV cell model is developed using the Silvaco TCAD simulation software. Validation on the simulation model was performed under atmospheric (AM) 1.5 standard test condition (STC) and TPV illumination conditions. Through the validation processes, a set of GaSb physical parameters that are reliable to be used for GaSb TPV cell simulation was established. Under AM1.5 testing condition, the electrical characteristic and performance of GaSb TPV of the reference cell were obtained from an experimental characterization on commercialized devices. A deviation in fill factor and cell efficiency was found between the cell sample and simulation model under AM1.5 illumination. This is due to the presence of resistance losses in the device. Nevertheless, a percentage error of below 3% was achieved under 1200 ° C TPV spectrum. Besides, it was found that a spectral filter that cuts at 2 μm increases the cell efficiency from 11.51% to 19.10% with a power output of 1.33 W/cm2. The finding in this study demonstrates the importance of minimizing the electrical losses and the determination of an optimal filtered spectrum wavelength for developing highperformance GaSb TPV cell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信