太阳能电池技术年发电量分析

M. Abbott, G. Xing, G. Scardera, D. Payne, K. McIntosh, Ben A. Sudbury, J. Meydbray, T. Fung, Muhammad Umair Khan, Yu Zhang, S. Zou, Xusheng Wang
{"title":"太阳能电池技术年发电量分析","authors":"M. Abbott, G. Xing, G. Scardera, D. Payne, K. McIntosh, Ben A. Sudbury, J. Meydbray, T. Fung, Muhammad Umair Khan, Yu Zhang, S. Zou, Xusheng Wang","doi":"10.1109/PVSC40753.2019.8980523","DOIUrl":null,"url":null,"abstract":"The ultimate value of any photovoltaic technology is the amount of energy it delivers once installed in the field. Gathering this data experimentally can take many years and requires great cost with limited scope to vary the input parameters. Simulations based on detailed lab measurements provide a more cost-effective option to predict the energy yield of a PV technology rapidly. This paper demonstrates the application of highly detailed ray tracing and SPICE modelling to determine the annual energy yield. It compares the simulated performance of different texturing technologies and predicts the losses at a cell, module and system level. Specifically, it studies upright random pyramids, isotexture and two types of MCCE black silicon applied to a Cz bifacial PERC cell. The difference between isotexture and random pyramids was close to 5% at the cell level, however this significantly reduced to less than 2% at a system level indicating that this analysis is critical to properly assess the ultimate value of a technology.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"39 1","pages":"3046-3050"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Annual energy yield analysis of solar cell technology\",\"authors\":\"M. Abbott, G. Xing, G. Scardera, D. Payne, K. McIntosh, Ben A. Sudbury, J. Meydbray, T. Fung, Muhammad Umair Khan, Yu Zhang, S. Zou, Xusheng Wang\",\"doi\":\"10.1109/PVSC40753.2019.8980523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ultimate value of any photovoltaic technology is the amount of energy it delivers once installed in the field. Gathering this data experimentally can take many years and requires great cost with limited scope to vary the input parameters. Simulations based on detailed lab measurements provide a more cost-effective option to predict the energy yield of a PV technology rapidly. This paper demonstrates the application of highly detailed ray tracing and SPICE modelling to determine the annual energy yield. It compares the simulated performance of different texturing technologies and predicts the losses at a cell, module and system level. Specifically, it studies upright random pyramids, isotexture and two types of MCCE black silicon applied to a Cz bifacial PERC cell. The difference between isotexture and random pyramids was close to 5% at the cell level, however this significantly reduced to less than 2% at a system level indicating that this analysis is critical to properly assess the ultimate value of a technology.\",\"PeriodicalId\":6749,\"journal\":{\"name\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"39 1\",\"pages\":\"3046-3050\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC40753.2019.8980523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC40753.2019.8980523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

任何光伏技术的最终价值在于它在现场安装后提供的能量。通过实验收集这些数据可能需要多年的时间,并且需要很大的成本,而且改变输入参数的范围有限。基于详细实验室测量的模拟为快速预测光伏技术的能量产量提供了一种更具成本效益的选择。本文演示了高度详细的光线追踪和SPICE建模在确定年发电量方面的应用。比较了不同纹理技术的模拟性能,并预测了单元级、模块级和系统级的损耗。具体来说,它研究了直立随机金字塔,等织构和两种类型的MCCE黑硅应用于Cz双面PERC电池。在细胞水平上,等纹理和随机金字塔之间的差异接近5%,但在系统水平上,这一差异显著降低到不到2%,这表明这种分析对于正确评估一项技术的最终价值至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Annual energy yield analysis of solar cell technology
The ultimate value of any photovoltaic technology is the amount of energy it delivers once installed in the field. Gathering this data experimentally can take many years and requires great cost with limited scope to vary the input parameters. Simulations based on detailed lab measurements provide a more cost-effective option to predict the energy yield of a PV technology rapidly. This paper demonstrates the application of highly detailed ray tracing and SPICE modelling to determine the annual energy yield. It compares the simulated performance of different texturing technologies and predicts the losses at a cell, module and system level. Specifically, it studies upright random pyramids, isotexture and two types of MCCE black silicon applied to a Cz bifacial PERC cell. The difference between isotexture and random pyramids was close to 5% at the cell level, however this significantly reduced to less than 2% at a system level indicating that this analysis is critical to properly assess the ultimate value of a technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信