从实用到纯粹几何再回来

M. Valente
{"title":"从实用到纯粹几何再回来","authors":"M. Valente","doi":"10.47976/RBHM2020V20N3913-33","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to address the relation existing between ancient Greek (planar) practical geometry and ancient Greek (planar) pure geometry. In the first part of the work, we will consider practical and pure geometry and how pure geometry can be seen, in some respects, as arising from an idealization of practical geometry. From an analysis of relevant extant texts, we will make explicit the idealizations at play in pure geometry in relation to practical geometry, some of which are basically explicit in definitions, like that of segments (straight lines) in Euclid‘s Elements. Then, we will address how in pure geometry we, so tospeak, ―refer back‖ to practical geometry. This occurs in two ways. One, in the propositions of pure geometry (due to the accompanying figures). The other, when applying pure geometry. In this case, geometrical objects can represent practical figures like, e.g., a practical segment.","PeriodicalId":34320,"journal":{"name":"Revista Brasileira de Historia da Matematica","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"From Practical to Pure Geometry and Back\",\"authors\":\"M. Valente\",\"doi\":\"10.47976/RBHM2020V20N3913-33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this work is to address the relation existing between ancient Greek (planar) practical geometry and ancient Greek (planar) pure geometry. In the first part of the work, we will consider practical and pure geometry and how pure geometry can be seen, in some respects, as arising from an idealization of practical geometry. From an analysis of relevant extant texts, we will make explicit the idealizations at play in pure geometry in relation to practical geometry, some of which are basically explicit in definitions, like that of segments (straight lines) in Euclid‘s Elements. Then, we will address how in pure geometry we, so tospeak, ―refer back‖ to practical geometry. This occurs in two ways. One, in the propositions of pure geometry (due to the accompanying figures). The other, when applying pure geometry. In this case, geometrical objects can represent practical figures like, e.g., a practical segment.\",\"PeriodicalId\":34320,\"journal\":{\"name\":\"Revista Brasileira de Historia da Matematica\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Historia da Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47976/RBHM2020V20N3913-33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Historia da Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47976/RBHM2020V20N3913-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

这项工作的目的是解决古希腊(平面)实用几何和古希腊(平面)纯粹几何之间存在的关系。在本书的第一部分,我们将考虑实用几何和纯几何,以及在某些方面,纯几何是如何从实用几何的理想化中产生的。通过对现存相关文本的分析,我们将明确在纯几何中发挥作用的理想化与实用几何的关系,其中一些基本上是明确的定义,如欧几里得的线段(直线)。然后,我们将解决如何在纯几何我们,可以这么说,-参考回‖实用几何。这以两种方式发生。一,在纯几何的命题中(由于附图)。另一个,当应用纯几何时。在这种情况下,几何对象可以表示实际的图形,例如实际的线段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Practical to Pure Geometry and Back
The purpose of this work is to address the relation existing between ancient Greek (planar) practical geometry and ancient Greek (planar) pure geometry. In the first part of the work, we will consider practical and pure geometry and how pure geometry can be seen, in some respects, as arising from an idealization of practical geometry. From an analysis of relevant extant texts, we will make explicit the idealizations at play in pure geometry in relation to practical geometry, some of which are basically explicit in definitions, like that of segments (straight lines) in Euclid‘s Elements. Then, we will address how in pure geometry we, so tospeak, ―refer back‖ to practical geometry. This occurs in two ways. One, in the propositions of pure geometry (due to the accompanying figures). The other, when applying pure geometry. In this case, geometrical objects can represent practical figures like, e.g., a practical segment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
16
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信