无界严格奇异算子

R.W. Cross
{"title":"无界严格奇异算子","authors":"R.W. Cross","doi":"10.1016/S1385-7258(88)80004-0","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>D(T)⊂X→Y</em> be an unbounded linear operator where <em>X</em> and <em>Y</em> are normed spaces. It is shown that if <em>Y</em> is complete then <em>T</em> is strictly singular if and only if <em>T</em> is the sum of a continuous strictly singular operator and an unbounded finite rank operator. A counterexample is constructed for the case in which <em>Y</em> is not complete.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"91 3","pages":"Pages 245-248"},"PeriodicalIF":0.0000,"publicationDate":"1988-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80004-0","citationCount":"9","resultStr":"{\"title\":\"Unbounded strictly singular operators\",\"authors\":\"R.W. Cross\",\"doi\":\"10.1016/S1385-7258(88)80004-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>D(T)⊂X→Y</em> be an unbounded linear operator where <em>X</em> and <em>Y</em> are normed spaces. It is shown that if <em>Y</em> is complete then <em>T</em> is strictly singular if and only if <em>T</em> is the sum of a continuous strictly singular operator and an unbounded finite rank operator. A counterexample is constructed for the case in which <em>Y</em> is not complete.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"91 3\",\"pages\":\"Pages 245-248\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80004-0\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725888800040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725888800040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

设D(T)∧X→Y是一个无界线性算子,其中X和Y是赋范空间。证明了如果Y是完全的,那么当且仅当T是连续严格奇异算子与无界有限秩算子的和时,T是严格奇异的。对于Y不完全的情况,构造了一个反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unbounded strictly singular operators

Let D(T)⊂X→Y be an unbounded linear operator where X and Y are normed spaces. It is shown that if Y is complete then T is strictly singular if and only if T is the sum of a continuous strictly singular operator and an unbounded finite rank operator. A counterexample is constructed for the case in which Y is not complete.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信