拟周期信号非齐次周期辨识的随机方法

D. T. Guzmán, C. Carbajal
{"title":"拟周期信号非齐次周期辨识的随机方法","authors":"D. T. Guzmán, C. Carbajal","doi":"10.15662/IJAREEIE.2015.0402003","DOIUrl":null,"url":null,"abstract":"Quasi-periodic signals can be contaminated with random distortions (“artifacts”) not manifested periodically and homogenously,without affecting all signal cycles.These distortions cannot be characterized statistically or modelled with a known probability function. In this paper, a stochastic analysis method to detect the presence of such distortions is proposed. The aim of the method is identifying the affected cycles, which exhibit a different morphology compared to the unaffected cycles.The identification of the affected cycles (or non-homogeneous cycles) allows to estimate parameters and extract the useful information needed for a correct characterization of the signal.The method compares nearly periodic signal cycles through the mean square error and the estimated variance of the inherent noise affecting the signal. Expressions are derived to estimate this error and compared with experimental results.","PeriodicalId":13702,"journal":{"name":"International Journal of Advanced Research in Electrical, Electronics and Instrumentation Energy","volume":"3 1","pages":"516-523"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stochastic Method for Non-HomogeneousCycles Identification in Quasi-Periodic Signals\",\"authors\":\"D. T. Guzmán, C. Carbajal\",\"doi\":\"10.15662/IJAREEIE.2015.0402003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quasi-periodic signals can be contaminated with random distortions (“artifacts”) not manifested periodically and homogenously,without affecting all signal cycles.These distortions cannot be characterized statistically or modelled with a known probability function. In this paper, a stochastic analysis method to detect the presence of such distortions is proposed. The aim of the method is identifying the affected cycles, which exhibit a different morphology compared to the unaffected cycles.The identification of the affected cycles (or non-homogeneous cycles) allows to estimate parameters and extract the useful information needed for a correct characterization of the signal.The method compares nearly periodic signal cycles through the mean square error and the estimated variance of the inherent noise affecting the signal. Expressions are derived to estimate this error and compared with experimental results.\",\"PeriodicalId\":13702,\"journal\":{\"name\":\"International Journal of Advanced Research in Electrical, Electronics and Instrumentation Energy\",\"volume\":\"3 1\",\"pages\":\"516-523\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Research in Electrical, Electronics and Instrumentation Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15662/IJAREEIE.2015.0402003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Electrical, Electronics and Instrumentation Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15662/IJAREEIE.2015.0402003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

准周期信号可能会受到随机畸变(“伪影”)的污染,而不是周期性和均匀地表现出来,而不会影响所有信号周期。这些扭曲不能用统计特征或已知的概率函数来建模。本文提出了一种随机分析方法来检测这种失真的存在。该方法的目的是识别受影响的周期,与未受影响的周期相比,它们表现出不同的形态。受影响周期(或非均匀周期)的识别允许估计参数并提取正确表征信号所需的有用信息。该方法通过影响信号的固有噪声的均方误差和估计方差来比较近周期信号周期。推导了误差估计表达式,并与实验结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Method for Non-HomogeneousCycles Identification in Quasi-Periodic Signals
Quasi-periodic signals can be contaminated with random distortions (“artifacts”) not manifested periodically and homogenously,without affecting all signal cycles.These distortions cannot be characterized statistically or modelled with a known probability function. In this paper, a stochastic analysis method to detect the presence of such distortions is proposed. The aim of the method is identifying the affected cycles, which exhibit a different morphology compared to the unaffected cycles.The identification of the affected cycles (or non-homogeneous cycles) allows to estimate parameters and extract the useful information needed for a correct characterization of the signal.The method compares nearly periodic signal cycles through the mean square error and the estimated variance of the inherent noise affecting the signal. Expressions are derived to estimate this error and compared with experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信