{"title":"拟周期信号非齐次周期辨识的随机方法","authors":"D. T. Guzmán, C. Carbajal","doi":"10.15662/IJAREEIE.2015.0402003","DOIUrl":null,"url":null,"abstract":"Quasi-periodic signals can be contaminated with random distortions (“artifacts”) not manifested periodically and homogenously,without affecting all signal cycles.These distortions cannot be characterized statistically or modelled with a known probability function. In this paper, a stochastic analysis method to detect the presence of such distortions is proposed. The aim of the method is identifying the affected cycles, which exhibit a different morphology compared to the unaffected cycles.The identification of the affected cycles (or non-homogeneous cycles) allows to estimate parameters and extract the useful information needed for a correct characterization of the signal.The method compares nearly periodic signal cycles through the mean square error and the estimated variance of the inherent noise affecting the signal. Expressions are derived to estimate this error and compared with experimental results.","PeriodicalId":13702,"journal":{"name":"International Journal of Advanced Research in Electrical, Electronics and Instrumentation Energy","volume":"3 1","pages":"516-523"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stochastic Method for Non-HomogeneousCycles Identification in Quasi-Periodic Signals\",\"authors\":\"D. T. Guzmán, C. Carbajal\",\"doi\":\"10.15662/IJAREEIE.2015.0402003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quasi-periodic signals can be contaminated with random distortions (“artifacts”) not manifested periodically and homogenously,without affecting all signal cycles.These distortions cannot be characterized statistically or modelled with a known probability function. In this paper, a stochastic analysis method to detect the presence of such distortions is proposed. The aim of the method is identifying the affected cycles, which exhibit a different morphology compared to the unaffected cycles.The identification of the affected cycles (or non-homogeneous cycles) allows to estimate parameters and extract the useful information needed for a correct characterization of the signal.The method compares nearly periodic signal cycles through the mean square error and the estimated variance of the inherent noise affecting the signal. Expressions are derived to estimate this error and compared with experimental results.\",\"PeriodicalId\":13702,\"journal\":{\"name\":\"International Journal of Advanced Research in Electrical, Electronics and Instrumentation Energy\",\"volume\":\"3 1\",\"pages\":\"516-523\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Research in Electrical, Electronics and Instrumentation Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15662/IJAREEIE.2015.0402003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Electrical, Electronics and Instrumentation Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15662/IJAREEIE.2015.0402003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stochastic Method for Non-HomogeneousCycles Identification in Quasi-Periodic Signals
Quasi-periodic signals can be contaminated with random distortions (“artifacts”) not manifested periodically and homogenously,without affecting all signal cycles.These distortions cannot be characterized statistically or modelled with a known probability function. In this paper, a stochastic analysis method to detect the presence of such distortions is proposed. The aim of the method is identifying the affected cycles, which exhibit a different morphology compared to the unaffected cycles.The identification of the affected cycles (or non-homogeneous cycles) allows to estimate parameters and extract the useful information needed for a correct characterization of the signal.The method compares nearly periodic signal cycles through the mean square error and the estimated variance of the inherent noise affecting the signal. Expressions are derived to estimate this error and compared with experimental results.