{"title":"碳酸盐岩裂缝钻井漏失原因研究","authors":"A. Ruzhnikov","doi":"10.2118/205806-ms","DOIUrl":null,"url":null,"abstract":"\n Fractured carbonate formations are prone to lost circulation, which affects the well construction process and has longtime effect on well integrity. Depending on the nature of losses (either induced or related to local dissolutions) the success rate is different when the induced losses can be cured with a high chance, and the one related to dissolutions may take a long time, and despite multiple attempts, the success rate is normally low.\n To have a better understanding of the complete losses across the fractured carbonates, a series of studies were initiated. First, to understand the strength of the loss zone, the fracture closing pressure was evaluated studying the fluid level in the annulus and back-calculating the effect of drilling fluid density. Second, the formation properties across the loss circulation zones were studied using microresistivity images, dip data, and imaging of fluid-saturated porous media.\n The results of the studies brought a lot of new information and explained some previous mysteries. The formation strength across the lost circulation zone was measured, and it was confirmed that it remains constant despite other changes of the well construction parameters. Additionally, it was confirmed that the carbonates are naturally highly fractured, having over 900 fractures along the wellbore. The loss circulation zone was characterized, and it was confirmed that the losses are not related to the fractures but rather to the karst, dissolution, and megafractures. The size and dip of the fractures were identified, and it was proven the possibility to treat them with conventional materials. However, the size of identified megafractures and karst zones exceeding the fractures by 10 times in true vertical depth, and in horizontal wells the difference is even higher due to measured depth. This new information helps to explain the previous unsuccessful attempts with the conventional lost circulation materials.\n The manuscript provides new information on the fractured carbonate formation characterization not available previously in the literature. It allows to align the subsurface and drilling visions regarding the nature of the losses and further develop the curing mechanisms.","PeriodicalId":11017,"journal":{"name":"Day 2 Wed, October 13, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Study of the Cause of Lost Circulation while Drilling Fractured Carbonates\",\"authors\":\"A. Ruzhnikov\",\"doi\":\"10.2118/205806-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fractured carbonate formations are prone to lost circulation, which affects the well construction process and has longtime effect on well integrity. Depending on the nature of losses (either induced or related to local dissolutions) the success rate is different when the induced losses can be cured with a high chance, and the one related to dissolutions may take a long time, and despite multiple attempts, the success rate is normally low.\\n To have a better understanding of the complete losses across the fractured carbonates, a series of studies were initiated. First, to understand the strength of the loss zone, the fracture closing pressure was evaluated studying the fluid level in the annulus and back-calculating the effect of drilling fluid density. Second, the formation properties across the loss circulation zones were studied using microresistivity images, dip data, and imaging of fluid-saturated porous media.\\n The results of the studies brought a lot of new information and explained some previous mysteries. The formation strength across the lost circulation zone was measured, and it was confirmed that it remains constant despite other changes of the well construction parameters. Additionally, it was confirmed that the carbonates are naturally highly fractured, having over 900 fractures along the wellbore. The loss circulation zone was characterized, and it was confirmed that the losses are not related to the fractures but rather to the karst, dissolution, and megafractures. The size and dip of the fractures were identified, and it was proven the possibility to treat them with conventional materials. However, the size of identified megafractures and karst zones exceeding the fractures by 10 times in true vertical depth, and in horizontal wells the difference is even higher due to measured depth. This new information helps to explain the previous unsuccessful attempts with the conventional lost circulation materials.\\n The manuscript provides new information on the fractured carbonate formation characterization not available previously in the literature. It allows to align the subsurface and drilling visions regarding the nature of the losses and further develop the curing mechanisms.\",\"PeriodicalId\":11017,\"journal\":{\"name\":\"Day 2 Wed, October 13, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, October 13, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/205806-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 13, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205806-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of the Cause of Lost Circulation while Drilling Fractured Carbonates
Fractured carbonate formations are prone to lost circulation, which affects the well construction process and has longtime effect on well integrity. Depending on the nature of losses (either induced or related to local dissolutions) the success rate is different when the induced losses can be cured with a high chance, and the one related to dissolutions may take a long time, and despite multiple attempts, the success rate is normally low.
To have a better understanding of the complete losses across the fractured carbonates, a series of studies were initiated. First, to understand the strength of the loss zone, the fracture closing pressure was evaluated studying the fluid level in the annulus and back-calculating the effect of drilling fluid density. Second, the formation properties across the loss circulation zones were studied using microresistivity images, dip data, and imaging of fluid-saturated porous media.
The results of the studies brought a lot of new information and explained some previous mysteries. The formation strength across the lost circulation zone was measured, and it was confirmed that it remains constant despite other changes of the well construction parameters. Additionally, it was confirmed that the carbonates are naturally highly fractured, having over 900 fractures along the wellbore. The loss circulation zone was characterized, and it was confirmed that the losses are not related to the fractures but rather to the karst, dissolution, and megafractures. The size and dip of the fractures were identified, and it was proven the possibility to treat them with conventional materials. However, the size of identified megafractures and karst zones exceeding the fractures by 10 times in true vertical depth, and in horizontal wells the difference is even higher due to measured depth. This new information helps to explain the previous unsuccessful attempts with the conventional lost circulation materials.
The manuscript provides new information on the fractured carbonate formation characterization not available previously in the literature. It allows to align the subsurface and drilling visions regarding the nature of the losses and further develop the curing mechanisms.