Y. Miyoshi, K. Mitsubayashi, T. Sawada, M. Ogawa, K. Otsuka, T. Takeuchi
{"title":"基于软mems技术的可穿戴式多孔膜湿度传感器","authors":"Y. Miyoshi, K. Mitsubayashi, T. Sawada, M. Ogawa, K. Otsuka, T. Takeuchi","doi":"10.1109/SENSOR.2005.1497315","DOIUrl":null,"url":null,"abstract":"An electric conductimetric sensor (thickness: 80 /spl mu/m) constructed in a sandwich configuration with a hydrophilic poly-tetrafluoroethylene membrane placed between two gold deposited layers was evaluated for use as a moisture sensor. The humidity level was measured by electrical conductivity of the device using the multifrequency LCR-meter at frequencies ranging from 100 Hz to 100 kHz, the device was calibrated at 100 Hz against the moisture air over the range of 30-85 % RH, which includes normal humidity level in the atmosphere and physiologic air such as breath and sweating. The response sensitivity of the conductimetric device was extremely high (i.e. less than 1 sec. for conductivity shift between humid air of 80 % RH and dried air of -60 /spl deg/C dew point) even for recovery to dried air. The sensor performance was reproducible over multiple measurements, showing the highly reproducibility with a coefficient of variation of 1.77 % (n = 5).","PeriodicalId":22359,"journal":{"name":"The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05.","volume":"40 1","pages":"1290-1291 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wearable humidity sensor with porous membrane by soft-MEMS techniques\",\"authors\":\"Y. Miyoshi, K. Mitsubayashi, T. Sawada, M. Ogawa, K. Otsuka, T. Takeuchi\",\"doi\":\"10.1109/SENSOR.2005.1497315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An electric conductimetric sensor (thickness: 80 /spl mu/m) constructed in a sandwich configuration with a hydrophilic poly-tetrafluoroethylene membrane placed between two gold deposited layers was evaluated for use as a moisture sensor. The humidity level was measured by electrical conductivity of the device using the multifrequency LCR-meter at frequencies ranging from 100 Hz to 100 kHz, the device was calibrated at 100 Hz against the moisture air over the range of 30-85 % RH, which includes normal humidity level in the atmosphere and physiologic air such as breath and sweating. The response sensitivity of the conductimetric device was extremely high (i.e. less than 1 sec. for conductivity shift between humid air of 80 % RH and dried air of -60 /spl deg/C dew point) even for recovery to dried air. The sensor performance was reproducible over multiple measurements, showing the highly reproducibility with a coefficient of variation of 1.77 % (n = 5).\",\"PeriodicalId\":22359,\"journal\":{\"name\":\"The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05.\",\"volume\":\"40 1\",\"pages\":\"1290-1291 Vol. 2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSOR.2005.1497315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2005.1497315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wearable humidity sensor with porous membrane by soft-MEMS techniques
An electric conductimetric sensor (thickness: 80 /spl mu/m) constructed in a sandwich configuration with a hydrophilic poly-tetrafluoroethylene membrane placed between two gold deposited layers was evaluated for use as a moisture sensor. The humidity level was measured by electrical conductivity of the device using the multifrequency LCR-meter at frequencies ranging from 100 Hz to 100 kHz, the device was calibrated at 100 Hz against the moisture air over the range of 30-85 % RH, which includes normal humidity level in the atmosphere and physiologic air such as breath and sweating. The response sensitivity of the conductimetric device was extremely high (i.e. less than 1 sec. for conductivity shift between humid air of 80 % RH and dried air of -60 /spl deg/C dew point) even for recovery to dried air. The sensor performance was reproducible over multiple measurements, showing the highly reproducibility with a coefficient of variation of 1.77 % (n = 5).