纳米流体在具有磁场和活化能的拉伸表面上回旋微生物的流动

IF 1.1 Q4 THERMODYNAMICS
M. R. Madhavi, P. Sravanthi
{"title":"纳米流体在具有磁场和活化能的拉伸表面上回旋微生物的流动","authors":"M. R. Madhavi, P. Sravanthi","doi":"10.5098/hmt.19.40","DOIUrl":null,"url":null,"abstract":"In this paper, reaction of magnetic field and activation energy is applied on nanoparticles and swimming gyrotactic microorganisms under the viscous dissipation is inspecting. The effect of thermophoresis and Brownian motion is also considered. The PDEs are naturalized into ODEs by using similarity transformations. To solving the PDEs by using RK-Fehlberg with shooting approach by MATLAB software. The effect of magnetic parameter, Schmidt number, Prandtl number, Brownian motion, thermophoresis, Peclet number, porosity parameter, on velocity, temperature, concentration, motile microorganism density portrait is in detailed it is discussed and the eventualities are demonstrated in graphs. The effects of these factors on Nusselt number, skin friction coefficient, Sherwood number and density number of motile microorganisms are concluded using tabular form.","PeriodicalId":46200,"journal":{"name":"Frontiers in Heat and Mass Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NANOFLUID FLOW IN PRESENCE OF GYROTACTIC MICROORGANISMS ON THE STRETCHING SURFACE WITH MAGNETIC FIELD AND ACTIVATION ENERGY\",\"authors\":\"M. R. Madhavi, P. Sravanthi\",\"doi\":\"10.5098/hmt.19.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, reaction of magnetic field and activation energy is applied on nanoparticles and swimming gyrotactic microorganisms under the viscous dissipation is inspecting. The effect of thermophoresis and Brownian motion is also considered. The PDEs are naturalized into ODEs by using similarity transformations. To solving the PDEs by using RK-Fehlberg with shooting approach by MATLAB software. The effect of magnetic parameter, Schmidt number, Prandtl number, Brownian motion, thermophoresis, Peclet number, porosity parameter, on velocity, temperature, concentration, motile microorganism density portrait is in detailed it is discussed and the eventualities are demonstrated in graphs. The effects of these factors on Nusselt number, skin friction coefficient, Sherwood number and density number of motile microorganisms are concluded using tabular form.\",\"PeriodicalId\":46200,\"journal\":{\"name\":\"Frontiers in Heat and Mass Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Heat and Mass Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5098/hmt.19.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5098/hmt.19.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文将磁场与活化能的反应应用于纳米颗粒和游动的陀螺微生物在粘性耗散下进行了研究。还考虑了热泳动和布朗运动的影响。通过使用相似变换将pde归化为ode。利用MATLAB软件利用RK-Fehlberg射击法求解偏微分方程。详细讨论了磁参数、施密特数、普朗特数、布朗运动、热泳动、佩克莱数、孔隙率参数对速度、温度、浓度、运动微生物密度肖像的影响,并用图形说明了这些影响的可能性。用表格的形式总结了这些因素对运动微生物的努塞尔数、摩擦系数、舍伍德数和密度数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NANOFLUID FLOW IN PRESENCE OF GYROTACTIC MICROORGANISMS ON THE STRETCHING SURFACE WITH MAGNETIC FIELD AND ACTIVATION ENERGY
In this paper, reaction of magnetic field and activation energy is applied on nanoparticles and swimming gyrotactic microorganisms under the viscous dissipation is inspecting. The effect of thermophoresis and Brownian motion is also considered. The PDEs are naturalized into ODEs by using similarity transformations. To solving the PDEs by using RK-Fehlberg with shooting approach by MATLAB software. The effect of magnetic parameter, Schmidt number, Prandtl number, Brownian motion, thermophoresis, Peclet number, porosity parameter, on velocity, temperature, concentration, motile microorganism density portrait is in detailed it is discussed and the eventualities are demonstrated in graphs. The effects of these factors on Nusselt number, skin friction coefficient, Sherwood number and density number of motile microorganisms are concluded using tabular form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
61.10%
发文量
66
审稿时长
10 weeks
期刊介绍: Frontiers in Heat and Mass Transfer is a free-access and peer-reviewed online journal that provides a central vehicle for the exchange of basic ideas in heat and mass transfer between researchers and engineers around the globe. It disseminates information of permanent interest in the area of heat and mass transfer. Theory and fundamental research in heat and mass transfer, numerical simulations and algorithms, experimental techniques and measurements as applied to all kinds of current and emerging problems are welcome. Contributions to the journal consist of original research on heat and mass transfer in equipment, thermal systems, thermodynamic processes, nanotechnology, biotechnology, information technology, energy and power applications, as well as security and related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信