V. A. Kuznetsov, Maria S. Lavlinskaya, Andrey V. Sorokin
{"title":"Синтез графт-сополимеров натриевой соли карбоксиметилцеллюлозы с N-винилимидазолом и исследование свойств их водных дисперсий","authors":"V. A. Kuznetsov, Maria S. Lavlinskaya, Andrey V. Sorokin","doi":"10.17308/KCMF.2019.21/761","DOIUrl":null,"url":null,"abstract":"Радикальной полимеризацией в присутствии пероксида водорода получены графт-сополимеры натриевой соли карбоксиметилцеллюлозы и N-винилимидазола. Структура полученных продуктов подтверждена методом ИК-спектроскопии. Методами просвечивающей электронной микроскопии, динамического светорассеяния и лазерного допплеровского микроэлектрофореза установлено, что частицы дисперсий сополимеров имеют несферическую форму и отрицательный электрокинетический потенциал. Изучено влияние присутствие хлорида натрия на гидродинамический радиус частиц полимеров \n \n \nREFERENCES \n \nMadruga E. From classical to living/controlled statistical free-radical copolymerization // Prog. Polym. Sci., 2002, v. 27, pp. 1879–1924. https://doi.org/10.1016/S0079-6700(02)00023-0 \nBarouti G., Jaffredo C. G., Guillaume S. M. Advances in drug delivery systems based on synthetic poly(hydroxybutyrate) (co)polymers // Polym. Sci., 2017, v. 73, pp. 1–31. https://doi.org/10.1016/j.progpolymsci. 2017.05.002 \nKabanov A. V., Vinogradov S. V. Nanogels as pharmaceutical carriers: fi nite networks of infi nite capabilities // Chem. Int. Ed., 2009, v. 48, pp. 5418–5429. https://doi.org/10.1002/anie.200900441 \nOh J. K., Drumright R., Siegwart D., Matyjaszewski K. The development of microgels/nanogels for drug delivery applications // Polym. Sci., 2008, v. 33, pp. 448–477. https://doi.org/10.1016/j.progpolymsci.2008.01.002 \nKuznetsov V. A., Lavlinskaya M. S., Ostankova I. V. Synthesis of N-vinylformamide and 1-vinyl-(1-methacryloyl)-3,5-dimethylpyrazole copolymers and their extraction ability in relation to histidine in watersalt media // Bull., 2018, v. 75, pp. 1237–1251. https://doi.org/10.1007/s00289-017-2091-2 \nBhattacharya A., Misra B. Grafting: a versatile means to modify polymersTechniques, factors and applications // Polym. Sci., 2004, v. 29, pp. 767–814. https://doi.org/10.1016/j. progpolymsci.2004.05.002 \nRasoulzadeh M., Namaz H. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent // Polym., 2017, v. 168, pp. 320–326. https://doi.org/10.1016/j.carbpol.2017.03.014 \nWorzakowska M. Chemical modifi cation of potato starch by graft copolymerization with citronellyl methacrylate // Polym. Environ., 2018, v. 26, pp. 1613–1624. https://doi.org/10.1007/s10924-017-1062-x \nKuznetsov V. A., Kushchev P. O., Blagodat skikh I. V. Aqueous dispersions of cross-linked poly-N-vinylcaprolactam stabilized with hydrophobically modified polyacrylamide: synthesis, colloidal stability, and thermosensitive properties // Polym. Sci., 2016, v. 294, pp. 889–899. https://doi.org/10.1007/s00396-016-3843-5 \nGen, Uzun C., Güven O. Quaternized poly(1-vinylimidazole) hydrogel for anion adsorption // Polym. Bull., 2016, v. 73, pp. 179–190. https://doi.org/10.1007/s00289-015-1479-0 \nJakubiak-Marcinkowska A, Legan M, Jezierska J. Molecularly imprinted polymeric Cu(II) catalysts with modified active centres mimicking oxidation enzymes // Polym. Res., 2013, v. 20(12), pp. 317–328. https://doi.org/10.1007/ s10965-013-0317-z \n","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17308/KCMF.2019.21/761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
过氧化氢的激进聚合产生了石化共聚物,碳化纤维素和N-乙烯基咪达唑。我们收到的产品的结构得到了红外光谱分析的证实。通过电子显微镜、动态光散射和激光多普勒微电泳,人们发现共聚物分散粒子具有非球形和负电动势。研究了氯化钠的存在对马德鲁加微量聚合物的水动力半径的影响。Polym。Sci。2002年,v27, pp, 1879 - 1924年。https://doi.org/10.1016/S0079-6700 (02) 00023 - 0 Barouti G, Guillaume Jaffredo c . G。s . m .合成波(Advances in drug delivery systems基于on hydroxybutyrate) (co) polymers / / Polym。Sci。2017 v73 pp 1 - 31https://doi.org/10.1016/j.progpolymsci。2017.05.002 Kabanov a V, Vinogradov S. vs . Nanogels S. pharmautical carriers: fi nite网络。Int。Ed, 2009年,v48, pp, 5418 - 5429。https://doi.org/10.1002/anie.200900441 Oh j K Drumright R。D Siegwart Matyjaszewski K The development of microgels nanogels for drug delivery applications / / Polym。Sci。2008年,v33, pp, 448 - 477。https://doi.org/10.1016/j.progpolymsci.2008.01.002 Kuznetsov v A、Lavlinskaya m . S。Ostankova一世v . Synthesis of N vinylformamide and 1 -黑胶唱片(1 - methacryloyl) - 3.5 dimethylpyrazole copolymers and their extraction ability in relation to histidine in watersalt media / /牛。2018年,v75年,pp, 1237 - 1251。https://doi.org/10.1007/s00289-017-2091-2 Bhattacharya A, b Misra嫁接:A versatile means to modify polymersTechniques豁免权and applications / / Polym。Sci。2004年,v29, pp, 767 - 814。https://doi.org/10.1016/j。progpolymsci.2004.05.002 rasoulzah M, Namaz H. carseylose / nano - nanocomgel beads2017 v168 pp 320 - 326https://doi.org/10.1016/j.carbpol.2017.03.014 Worzakowska m Chemical modifi starch by贪污copolymerization with citronellyl cation of创意methacrylate / / Polym。Environ。2018年,v26, pp, 1613 - 1624。https://doi.org/10.1007/s10924-017-1062-x Kuznetsov v . A ., Kushchev p O。Blagodat skikh一世v . Aqueous dispersions of cross -链接中国保利- N - vinylcaprolactam stabilized with hydrophobically改进型polyacrylamide: synthesis, colloidal and (thermosensitive / / Polym制动。Sci。2016年,v294, pp, 889 - 899。https://doi.org/10.1007/s00396-016-3843-5 GenUzun C。,Guven o . Quaternized波(1 - vinylimidazole) hydrogel for anion adsorption / / Polym。牛。2016年,v73, pp, 179 - 190。https://doi.org/10.1007/s00289-015-1479-0 Jakubiak Marcinkowska A、Legan M, Jezierska j Molecularly imprinted polymeric体液Cu (II) catalysts with改进型active mimicking oxidation enzymes / / Polym。Res, 2013年,v20 (12), pp, 317 - 328。https://doi.org/10.1007/ s10965 - 013 0317 - z
Синтез графт-сополимеров натриевой соли карбоксиметилцеллюлозы с N-винилимидазолом и исследование свойств их водных дисперсий
Радикальной полимеризацией в присутствии пероксида водорода получены графт-сополимеры натриевой соли карбоксиметилцеллюлозы и N-винилимидазола. Структура полученных продуктов подтверждена методом ИК-спектроскопии. Методами просвечивающей электронной микроскопии, динамического светорассеяния и лазерного допплеровского микроэлектрофореза установлено, что частицы дисперсий сополимеров имеют несферическую форму и отрицательный электрокинетический потенциал. Изучено влияние присутствие хлорида натрия на гидродинамический радиус частиц полимеров
REFERENCES
Madruga E. From classical to living/controlled statistical free-radical copolymerization // Prog. Polym. Sci., 2002, v. 27, pp. 1879–1924. https://doi.org/10.1016/S0079-6700(02)00023-0
Barouti G., Jaffredo C. G., Guillaume S. M. Advances in drug delivery systems based on synthetic poly(hydroxybutyrate) (co)polymers // Polym. Sci., 2017, v. 73, pp. 1–31. https://doi.org/10.1016/j.progpolymsci. 2017.05.002
Kabanov A. V., Vinogradov S. V. Nanogels as pharmaceutical carriers: fi nite networks of infi nite capabilities // Chem. Int. Ed., 2009, v. 48, pp. 5418–5429. https://doi.org/10.1002/anie.200900441
Oh J. K., Drumright R., Siegwart D., Matyjaszewski K. The development of microgels/nanogels for drug delivery applications // Polym. Sci., 2008, v. 33, pp. 448–477. https://doi.org/10.1016/j.progpolymsci.2008.01.002
Kuznetsov V. A., Lavlinskaya M. S., Ostankova I. V. Synthesis of N-vinylformamide and 1-vinyl-(1-methacryloyl)-3,5-dimethylpyrazole copolymers and their extraction ability in relation to histidine in watersalt media // Bull., 2018, v. 75, pp. 1237–1251. https://doi.org/10.1007/s00289-017-2091-2
Bhattacharya A., Misra B. Grafting: a versatile means to modify polymersTechniques, factors and applications // Polym. Sci., 2004, v. 29, pp. 767–814. https://doi.org/10.1016/j. progpolymsci.2004.05.002
Rasoulzadeh M., Namaz H. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent // Polym., 2017, v. 168, pp. 320–326. https://doi.org/10.1016/j.carbpol.2017.03.014
Worzakowska M. Chemical modifi cation of potato starch by graft copolymerization with citronellyl methacrylate // Polym. Environ., 2018, v. 26, pp. 1613–1624. https://doi.org/10.1007/s10924-017-1062-x
Kuznetsov V. A., Kushchev P. O., Blagodat skikh I. V. Aqueous dispersions of cross-linked poly-N-vinylcaprolactam stabilized with hydrophobically modified polyacrylamide: synthesis, colloidal stability, and thermosensitive properties // Polym. Sci., 2016, v. 294, pp. 889–899. https://doi.org/10.1007/s00396-016-3843-5
Gen, Uzun C., Güven O. Quaternized poly(1-vinylimidazole) hydrogel for anion adsorption // Polym. Bull., 2016, v. 73, pp. 179–190. https://doi.org/10.1007/s00289-015-1479-0
Jakubiak-Marcinkowska A, Legan M, Jezierska J. Molecularly imprinted polymeric Cu(II) catalysts with modified active centres mimicking oxidation enzymes // Polym. Res., 2013, v. 20(12), pp. 317–328. https://doi.org/10.1007/ s10965-013-0317-z