{"title":"扫描","authors":"Balz Maag, Zimu Zhou, O. Saukh, L. Thiele","doi":"10.1145/3090084","DOIUrl":null,"url":null,"abstract":"Urban air pollution monitoring with mobile, portable, low-cost sensors has attracted increasing research interest for their wide spatial coverage and affordable expenses to the general public. However, low-cost air quality sensors not only drift over time but also suffer from cross-sensitivities and dependency on meteorological effects. Therefore calibration of measurements from low-cost sensors is indispensable to guarantee data accuracy and consistency to be fit for quantitative studies on air pollution. In this work we propose sensor array network calibration (SCAN), a multi-hop calibration technique for dependent low-cost sensors. SCAN is applicable to sets of co-located, heterogeneous sensors, known as sensor arrays, to compensate for cross-sensitivities and dependencies on meteorological influences. SCAN minimizes error accumulation over multiple hops of sensor arrays, which is unattainable with existing multi-hop calibration techniques. We formulate SCAN as a novel constrained least-squares regression and provide a closed-form expression of its regression parameters. We theoretically prove that SCAN is free from regression dilution even in presence of measurement noise. In-depth simulations demonstrate that SCAN outperforms various calibration techniques. Evaluations on two real-world low-cost air pollution sensor datasets comprising 66 million samples collected over three years show that SCAN yields 16% to 60% lower error than state-of-the-art calibration techniques.","PeriodicalId":94140,"journal":{"name":"Mental health science","volume":"7 1","pages":"19 - 20"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Scan\",\"authors\":\"Balz Maag, Zimu Zhou, O. Saukh, L. Thiele\",\"doi\":\"10.1145/3090084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban air pollution monitoring with mobile, portable, low-cost sensors has attracted increasing research interest for their wide spatial coverage and affordable expenses to the general public. However, low-cost air quality sensors not only drift over time but also suffer from cross-sensitivities and dependency on meteorological effects. Therefore calibration of measurements from low-cost sensors is indispensable to guarantee data accuracy and consistency to be fit for quantitative studies on air pollution. In this work we propose sensor array network calibration (SCAN), a multi-hop calibration technique for dependent low-cost sensors. SCAN is applicable to sets of co-located, heterogeneous sensors, known as sensor arrays, to compensate for cross-sensitivities and dependencies on meteorological influences. SCAN minimizes error accumulation over multiple hops of sensor arrays, which is unattainable with existing multi-hop calibration techniques. We formulate SCAN as a novel constrained least-squares regression and provide a closed-form expression of its regression parameters. We theoretically prove that SCAN is free from regression dilution even in presence of measurement noise. In-depth simulations demonstrate that SCAN outperforms various calibration techniques. Evaluations on two real-world low-cost air pollution sensor datasets comprising 66 million samples collected over three years show that SCAN yields 16% to 60% lower error than state-of-the-art calibration techniques.\",\"PeriodicalId\":94140,\"journal\":{\"name\":\"Mental health science\",\"volume\":\"7 1\",\"pages\":\"19 - 20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mental health science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3090084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mental health science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3090084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Urban air pollution monitoring with mobile, portable, low-cost sensors has attracted increasing research interest for their wide spatial coverage and affordable expenses to the general public. However, low-cost air quality sensors not only drift over time but also suffer from cross-sensitivities and dependency on meteorological effects. Therefore calibration of measurements from low-cost sensors is indispensable to guarantee data accuracy and consistency to be fit for quantitative studies on air pollution. In this work we propose sensor array network calibration (SCAN), a multi-hop calibration technique for dependent low-cost sensors. SCAN is applicable to sets of co-located, heterogeneous sensors, known as sensor arrays, to compensate for cross-sensitivities and dependencies on meteorological influences. SCAN minimizes error accumulation over multiple hops of sensor arrays, which is unattainable with existing multi-hop calibration techniques. We formulate SCAN as a novel constrained least-squares regression and provide a closed-form expression of its regression parameters. We theoretically prove that SCAN is free from regression dilution even in presence of measurement noise. In-depth simulations demonstrate that SCAN outperforms various calibration techniques. Evaluations on two real-world low-cost air pollution sensor datasets comprising 66 million samples collected over three years show that SCAN yields 16% to 60% lower error than state-of-the-art calibration techniques.