拓扑Hopf超代数中3-流形的亨宁斯型不变量

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2018-06-21 DOI:10.4171/qt/142
N. Ha
{"title":"拓扑Hopf超代数中3-流形的亨宁斯型不变量","authors":"N. Ha","doi":"10.4171/qt/142","DOIUrl":null,"url":null,"abstract":"We prove the unrolled superalgebra $\\mathcal{U}_{\\xi}^{H}\\mathfrak{sl}(2|1)$ has a completion which is a ribbon superalgebra in a topological sense where $\\xi$ is a root of unity of odd order. Using this ribbon superalgebra we construct its universal invariant of links. We use it to construct an invariant of $3$-manifolds of Hennings type.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"100 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2018-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Hennings type invariant of 3-manifolds from a topological Hopf superalgebra\",\"authors\":\"N. Ha\",\"doi\":\"10.4171/qt/142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the unrolled superalgebra $\\\\mathcal{U}_{\\\\xi}^{H}\\\\mathfrak{sl}(2|1)$ has a completion which is a ribbon superalgebra in a topological sense where $\\\\xi$ is a root of unity of odd order. Using this ribbon superalgebra we construct its universal invariant of links. We use it to construct an invariant of $3$-manifolds of Hennings type.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/qt/142\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/qt/142","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

证明了展开超代数$\mathcal{U}_{\xi}^{H}\mathfrak{sl}(2|1)$具有拓扑意义上的条带超代数补全,其中$\xi$是奇阶单位的根。利用这个带超代数构造了它的环的全称不变量。我们用它构造了亨宁斯型$3$-流形的不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hennings type invariant of 3-manifolds from a topological Hopf superalgebra
We prove the unrolled superalgebra $\mathcal{U}_{\xi}^{H}\mathfrak{sl}(2|1)$ has a completion which is a ribbon superalgebra in a topological sense where $\xi$ is a root of unity of odd order. Using this ribbon superalgebra we construct its universal invariant of links. We use it to construct an invariant of $3$-manifolds of Hennings type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信