与线性正则变换相关的不变二次算子

Ravo Tokiniaina Ranaivoson, R. Andriambololona, Rakotoson Hanitriarivo
{"title":"与线性正则变换相关的不变二次算子","authors":"Ravo Tokiniaina Ranaivoson, R. Andriambololona, Rakotoson Hanitriarivo","doi":"10.21203/RS.3.RS-174871/V1","DOIUrl":null,"url":null,"abstract":"The main purpose of this work is to identify the general quadratic operator which is invariant under the action of Linear Canonical Transformations (LCTs). LCTs are known in signal processing and optics as the transformations which generalize certain useful integral transforms. In quantum theory, they can be identified as the linear transformations which keep invariant the canonical commutation relations characterizing the coordinates and momenta operators. In this paper, LCTs corresponding to a general pseudo-Euclidian space are considered. Explicit calculations are performed for the monodimensional case to identify the corresponding LCT invariant operator then multidimensional generalizations of the obtained results are deduced. It was noticed that the introduction of a variance-covariance matrix, of coordinate and momenta operators, and a pseudo-orthogonal representation of LCTs facilitate the identification of the invariant quadratic operator. According to the calculations carried out, the LCT invariant operator is a second order polynomial of the coordinates and momenta operators. The coefficients of this polynomial depend on the mean values and the statistical variances-covariances of these coordinates and momenta operators themselves. The eigenstates of the LCT invariant operator are also identified with it and some of the main possible applications of the obtained results are discussed.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":"16 9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant quadratic operator associated with Linear Canonical Transformations\",\"authors\":\"Ravo Tokiniaina Ranaivoson, R. Andriambololona, Rakotoson Hanitriarivo\",\"doi\":\"10.21203/RS.3.RS-174871/V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this work is to identify the general quadratic operator which is invariant under the action of Linear Canonical Transformations (LCTs). LCTs are known in signal processing and optics as the transformations which generalize certain useful integral transforms. In quantum theory, they can be identified as the linear transformations which keep invariant the canonical commutation relations characterizing the coordinates and momenta operators. In this paper, LCTs corresponding to a general pseudo-Euclidian space are considered. Explicit calculations are performed for the monodimensional case to identify the corresponding LCT invariant operator then multidimensional generalizations of the obtained results are deduced. It was noticed that the introduction of a variance-covariance matrix, of coordinate and momenta operators, and a pseudo-orthogonal representation of LCTs facilitate the identification of the invariant quadratic operator. According to the calculations carried out, the LCT invariant operator is a second order polynomial of the coordinates and momenta operators. The coefficients of this polynomial depend on the mean values and the statistical variances-covariances of these coordinates and momenta operators themselves. The eigenstates of the LCT invariant operator are also identified with it and some of the main possible applications of the obtained results are discussed.\",\"PeriodicalId\":8484,\"journal\":{\"name\":\"arXiv: Quantum Physics\",\"volume\":\"16 9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/RS.3.RS-174871/V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-174871/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是确定在线性正则变换作用下不变的一般二次算子。在信号处理和光学中,lct被称为推广某些有用的积分变换的变换。在量子理论中,它们可以被定义为线性变换,保持表征坐标算子和动量算子的正则交换关系不变。本文考虑了与一般伪欧几里得空间相对应的lct。对一维情况进行了显式计算,确定了相应的LCT不变算子,并对所得结果进行了多维推广。注意到,引入坐标算子和动量算子的方差协方差矩阵,以及lct的伪正交表示,便于确定不变二次算子。根据计算,LCT不变算子是坐标算子和动量算子的二阶多项式。这个多项式的系数取决于这些坐标和动量算子本身的平均值和统计方差——协方差。用它对LCT不变算子的特征态进行了辨识,并讨论了所得结果的一些可能的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant quadratic operator associated with Linear Canonical Transformations
The main purpose of this work is to identify the general quadratic operator which is invariant under the action of Linear Canonical Transformations (LCTs). LCTs are known in signal processing and optics as the transformations which generalize certain useful integral transforms. In quantum theory, they can be identified as the linear transformations which keep invariant the canonical commutation relations characterizing the coordinates and momenta operators. In this paper, LCTs corresponding to a general pseudo-Euclidian space are considered. Explicit calculations are performed for the monodimensional case to identify the corresponding LCT invariant operator then multidimensional generalizations of the obtained results are deduced. It was noticed that the introduction of a variance-covariance matrix, of coordinate and momenta operators, and a pseudo-orthogonal representation of LCTs facilitate the identification of the invariant quadratic operator. According to the calculations carried out, the LCT invariant operator is a second order polynomial of the coordinates and momenta operators. The coefficients of this polynomial depend on the mean values and the statistical variances-covariances of these coordinates and momenta operators themselves. The eigenstates of the LCT invariant operator are also identified with it and some of the main possible applications of the obtained results are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信